跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志銘
研究生(外文):Chih-Ming Huang
論文名稱:移動物體與危險偵測之演算法研究及其電路架構設計與實現
論文名稱(外文):Algorithm and Architecture Design for Detection of Moving Objects and Danger
指導教授:賴永康
指導教授(外文):Yeong-Kang Lai
口試委員:簡韶逸江正雄
口試委員(外文):Shao-Yi ChienJen-Shiun Chiang
口試日期:2014-01-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:移動物體偵測自我移動
外文關鍵詞:detection of moving objectsego-motionCORDIC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,車用電子是半導體產業積極開發的重要市場,汽車的配備採用越來越多的電子產品。隨著電子技術進步,具備避免碰撞效果之主動式安全配備逐漸成為主流。本論文提出如何用雙鏡頭攝影機拍攝的影像,以數位影像處理的方式來避免碰撞。移動物體相較於靜止物體往往會是造成危險的潛在因子,車子的移動造成攝影機拍攝的畫面中的移動物體和靜止物體都具有行車紀錄器的相對移動(或稱自我移動),所以我們的研究主要是如何從具有車子移動造成相對移動的影像分離出移動物體和靜止物體,進而判斷移動物體是否會造成危險。
演算法部分,我們利用雙鏡頭攝影機左右畫面所得到的視差加上左邊畫面的X坐標和Y坐標轉換成直角坐標的三維位置,加上前後畫面同一物體的位移,我們可以得到畫面中所有物體的位置與速度。由於畫面中物體的移動也包含自我移動,所以我們必需算出自我移動,算出自我移動後,將自我移動對移動物體和靜止物體所造成的移動移除即可分離出移動物體和靜止物體。因為前後時刻(1/30 sec)自我移動的變化很小,所以我們利用上一時刻的自我移動取代這一時刻的自我移動,並用它來分離出移動物體和靜止物體,然後再從靜止物體的移動反推出這一時刻的自我移動。找出移動物體後,我們再利用前後時刻(1/30 sec)移動物體移動的變化很小的特性對移動物體作移動預測,最後再判斷移動物體是否會對行車造成危險。
因軟體處理時間過長,故本論文針對具有平行化運算的區塊硬體化來加速運算速度。硬體方面,我們將需要用到座標平移與座標旋轉的運算用CORDIC電路來實現,並採用固定旋轉次數的CORDIC電路構架來降低進行座標平移運算與旋轉運算的CORDIC旋轉次數或是所需的硬體資源。
晶片實驗繥果採用TSMC/ARM 90 nm標準元件製程,工作頻率為346 MHZ,可處理HDTV1080P(1920 x 1080)的畫面。
In recent years, automotive electronics market is an important positive development of the semiconductor industry, there are more and more electronic products in a car. As electronic technology advances, active safety equipment with collisions avoidance is becoming main stream. In this thesis, we propose a technique how to avoid collisions in the image sequences captured by stereo camera. Moving objects are the most dangerous ones in many situations, and we implement a system that can detect independent moving objects through a stereo video platform.
Based on our proposed algorithm, we use the disparity information and the motion information (optical flow) through video preprocessing which video captured by a stereo camera to compute the 3D-position and 3D-motion of feature points of image. In order to detect the moving objects, it is necessary to compute the motion of moving observer (ego-motion). Since the variation of two ego-motions is small in 1/30 second, we use the former ego-motion to replace the current ego-motion. Then the moving objects and non-moving ones may be differentiated. After finding out the moving objects, we can estimate the position and motion next 1/30 second.
Due to long software processing time, the thesis attempts to speed up the processing by implementing hardware. We use the CORDIC architecture to implement the coordinate translation and coordinate rotation, and reduce the rotation steps and the hardware cost of CORDIC module by applying CORDIC architecture of fixed-angle rotations.
The spec of the proposed hardware architecture is the HDTV1080p applications at 346MHZ in TSMC 90 nm process.
第一章 引言 1
一、 車用電子系統 1
二、 車用防撞系統 4
三、 立體影像防撞系統 5
四、 論文組織 6
第二章 基於立體影像的移動物體偵測相關理論與文獻 7
一、 深度資訊的產生 8
二、 速度資訊的產生 9
三、 自我移動(Ego-motion)與移動物體偵測 10
四、 自我移動與移動物體偵測相關文獻介紹 11
(一) Visual Ego Motion Estimation in Urban Environments based on U-V Disparity[1] 11
(二) Fast detection of moving objects in complex scenarios[3] 12
第三章 應用於行車紀錄器之移動物體與危險偵測演算法以及模擬結果 13
一、 前言 13
二、 移動物體的偵測 15
(一) 座標轉換 15
(二) 移動點的擷取 20
(三) 計算自我移動 26
三、 移動物體的移動估測 36
(一) 移動補償 36
(二) 移動估測 38
四、 危險偵測與警告 40
五、 模擬結果 44
第四章 硬體架構設計與實作 51
一、 前言 51
二、 硬體規格 51
三、 硬體架構設計 52
四、 各單元之硬體架構設計 53
(一) 移動點的擷取 53
(三) 移動估測 54
(四) CORDIC Module 55
五、 實作結果 68
(一) 數位IC之設計流程 68
(二) 晶片規格 70
(三) SYNTHESIS 72
(四) LAYOUT 73
第五章 結論 75
參考文獻 76
[1]B. Musleh, D. Martin, A. d. l. escalera and J. M. Armingol, “Visual Ego Motion Estimation in Urban Environments based on U-V Disparity,” IEEE Intelligent Vehicles Symposium, pp 444-449, June 2012.
[2]A. Seki nad M. Okutomi, “Ego-Motion Estimation by Matching Dewarped Road Regions Using Stereo Images,” IEEE Robotics and Automation, pp 901-907, may 2006.
[3]C. Rabe, U. Franke, and S. Gehrig, “Fast Detection of Moving Objects in Complex Scenarios,” IEEE Intelligent Vehicles Symposium, pp 398-403, June 2007.
[4]M. Nishigaki and Y. Aloimonos, “Moving Obstacle Detection Using Cameras for Driver Assistance System,” IEEE Intelligent Vehicles Symposium, pp 805-812, June 2010.
[5]B. Kitt, B. Ranft, and H. Lategahn, “Detection and Tracking of Independently Moving Objects in Urban Environments,” IEEE Intelligent Transportation Systems, pp1396-1401, September 2010.
[6]H. Badino and T. Kanade, “A Head-Wearable Short-Baseline Stereo System for the Simultaneous Estimation of Structure and Motion,” MVA(Machine Visio Applications), Nara, Japan, June 2011.
[7]M. Agrawal, K. Konolige and L. Iocchi, “Real-time Detection of Independent Motion using Stereo,” Application of Computer Vision, pp207-214, January 2005.
[8]H. Badinao, U. Franke, C. Rabe and S. Gehrig, “Stereo Vision-Based Detection of Moving Objects under Strong Camera Motion,” Computer Vision Theory and Applications, pp253-260, February 2006.
[9]H. Badino, “A Robust Approach for Ego-Motion Estimation Using a Mobile Stereo Platform,” IWCM’04 Proceedings of the 1st international conference on Comples motion, pp198-208, 2004.
[10]P. K. Meher and S. Y. Park, “CORDIC Designs for Fixed Angle of Rotation,” Very Scale Integration (VLSI) Systems, pp217-228, February 2013.
[11]T. B. Juang, “Low Latency Angle Recoding Methods for the Higher Bit-Width Parallel CORDIC Rotator Implementations, ” IEEE Transaction on Circuits and Systems, pp1139-1143 , November 2008.
[12]B. Lakshmi and A. S. Dhar, “Parallel CORDIC-like Architecture: For Fast Rotation Implementation,” TENCON 2011-2011 IEEE region 10 Conference, pp701-705, November 2011.
[13]S. Aggarwal and K. Khare, “Hardware Efficient Architecture for Generating Sine/Cosine Waves,” VLSI Design (VLSID), pp 57-61, January, 2012.
[14]P. K. Meher, J. Valls ,T.-B. Juang, k. Sridharan and K. Maharatna, “50 years of CORDIC: Algorithms, architectures and applications,” IEEE Trans. Circuits Syst.I,Reg.Papers, pp 1893-1907, 2009.
[15]T.-B. Juang “Area/delay Efficient Recoding Methods for Parallel CORDIC Rotations,” Proc. Asia-Pac. Conf. Circuits Syst. (APCCAS), pp.1541 -1544 2006
[16]L. Vachhani , K. Sridharan and P. K. Meher “Efficient CORDIC Algorithms and Architectures for Low Area and High Throughput Implementation,”IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 1, pp.61-65, 2009.
[17]G. Stein, O. Mano, and A. Shashua, ‘A Robust Method for Computing Vehicle Ego-Motion,”Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE, pp. 362-368, 2000
[18]N. Nourani-Vatani, J. Roberts, and M. Srinivasan, “Practical Visual Odometry for Car-Like Vehicles,” Robotics and Automation, ICRA'09, pp3551-3557, 2009.
[19]U. Franke, C. Rabe, H. Badino, and S. Gehrig, "6d-Vision: Fusion of Stereo and Motion for Robust Environment Perception," in Proceedings of the 27th DAGM Symposium, pp. 216-223, 2005.
[20]N. Soquet , M. Perrollaz, R. Labayrade and D. Aubert, “Free Space Estimation for Autonomous Navigation,” in the Proceedings of the 5th International conference on Computer Vision, 2007.
[21]J. Nascimento and J. Marques, "Performance Evaluation of Object Detection Algorithms for Video Surveillance," IEEE Transactions on Multimedia, vol. 8, no. 4, pp. 761-774, August 2006.
[22]T. Yang, S. Z. Li, Q. Pan, and J. Li, “Real-Time and Accurate Segmentation of Moving Objects in Dynamic scene,” in Proceeding of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks, pp. 136-143, 2004.
[23]F. Stein, “Efficient Computation of Optical Flow Using the Census Transform,”26th DAGM Symposium on Pattern Recognition, Tubingen, 2004.
[24]C. Zach, T. Pock, H. Bischof, “A Duality Based Approach for Realtime TV-L1 Optical Flow,” DAGM Symposium, pp. 214-223, 2007.
[25]A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, D. Cremers, ‘Efficient Dense Scene Flow from Sparse or Dense Stereo Data,” 10th European Conference on Computer Vision, Marseille, France, 12.-18.10.2008.
[26]S. Gehrig, F. Eberli, T. Meyer, “A Real-Time Low-Power Stereo Engine Using Semi-Global Matching,” Proc. International Conference on Vision Systems ICVS, October 2009.
[27]H. Hirschmuller, S. Gehrig, “Stereo Matching in the Presence of Sub-Pixel Calibration Errors”, International Conference on Vision and Pattern Recognition, CVPR 2009
[28]S. Gehrig, U. Franke: “Improving Sub-pixel Accuracy for Long-Range Stereo”,Workshop VRML, International Conference on Computer Vision, ICCV 2007.
[29]H. Hirschmuller: "Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information", in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Volume 2, pp. 807-814, June 2005.
[30]A. Talukder and L.Matthies, “Real-Time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow,” Intelligent robots and Systems, pp3718-3728 vol.4, October 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top