跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛景聰
研究生(外文):Ching-Tsung Hsueh
論文名稱:應用於無線感測網路之低耗能安全機制
論文名稱(外文):A Secure and Energy-Efficient Scheme for Wireless Sensor Networks
指導教授:歐陽彥杰溫志煜
指導教授(外文):Yen-Chieh OuyangChih-Yu Wen
口試委員:馬代駿張建褘楊谷章楊晴雯
口試委員(外文):Dye-Jyun MaChein-I ChangGuu-Chang YangChing-Wen Yang
口試日期:2014-07-15
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:89
中文關鍵詞:無線感測網路阻絕休眠電力耗竭式攻擊安全機制
外文關鍵詞:wireless sensor networksenergy efficiencydenial-of-sleeppower exhausting attackssecure scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由於電力供應與運算能力的極端限制因素,省電節能與安全性是無線感測網路 (wireless sensor network, WSN) 應用設計上的重要考量因素;現有許多研究,已經針對電力消耗問題,運用「休眠」模式,提出各種不同的媒體存取控制 (media access control, MAC) 通訊協定設計,以求大幅降低無線感測器 (wireless sensor node) 的高負載作業時間,希望能夠有效達到節省電力消耗的目標,進而延長無線感測網路的有效工作時間。然而這些「休眠」模式設計卻難以抵擋「阻絕休眠」 (Denial-of-Sleep) 攻擊;此一攻擊採取「電力耗竭」(power exhausting) 方式,可以迫使無線感測網路之感測器快速消耗電力,並大幅縮短整體網路的有效工作時間;當設計者企圖應用傳統的安全機制進行防禦時,卻因為必須先喚醒線感測器才能執行安全運算,且多數傳統安全演算法運算太複雜,反而造成更大的電力消耗,因此傳統的安全機制並不適合直接套用在無線感測網路應用設計上。
本論文針對無線感測網路嚴格的電力供應與運算能力限制,整合不同網路層級,設計一套簡易且快速的有效安全機制,除了可以防禦「阻絕休眠」 (Denial-of-Sleep) 攻擊,也可以抵擋「重送」及「造假」攻擊,達到無線感測網路應用設計所需要的安全性需求;並且進一步從電力消耗的細部資料分析中,找出可行性的設計參考,協助無線感測網路應用的設計者在省電節能與安全性需求之間取得平衡。
Security and energy efficiency are important concerns in wireless sensor network (WSN) design. To save the power and extend the lifetime of WSNs, various media access control (MAC) protocols are proposed. The well-known security mechanisms usually awake the sensor nodes before these nodes are allowed to execute the security processes. However, the Denial-of-Sleep attacks can exhaust the energy of sensor nodes and shorten the lifetime of WSNs rapidly. Therefore, the existing designs of MAC protocol are insufficient to protect the WSNs from Denial-of-Sleep attack in MAC layer. Most conventional security solutions cannot be directly applied in the WSNs due to the limited power supply. The practical design is to simplify the authenticating process in order to enhance the performance of the MAC protocol in countering the power exhausting attacks. This thesis proposes a cross-layer design of secure scheme integrating the MAC protocol. The analyses show that the proposed scheme can counter the replay attack and forge attack in an energy-efficient way. The detailed analysis of energy distribution shows a reasonable decision rule of coordination between energy conservation and security requirements for WSNs.
誌謝 ... i
摘要 ... ii
Abstract ... iii
Table of Contents ... iv
List of Figures ... vii
List of Tables ... x
Chapter 1 Introduction ... 1
1.1 Sensor Network Design and Challenge ... 1
1.2 Security Dilemma of WSN Layer-2 Protocol Design ... 3
1.3 Contribution ... 4
Chapter 2 Background and Literature Review ... 7
2.1 Wireless Sensor Networks and Applications ... 7
2.2 Wireless Sensor Networks Protocol Stack ... 9
2.3 Duty-Cycle Based MAC Protocols ... 11
2.3.1 Taxonomy of Duty-Cycle Based MAC Protocols ... 12
2.3.2 Synchronous Schemes ... 14
2.3.3 Asynchronous Schemes ... 15
2.3.4 Preamble Sampling Technique ... 15
2.3.5 B-MAC Protocol ... 16
2.3.6 X-MAC Protocol ... 17
2.3.7 Low Power Probing and RI-MAC Protocol ... 19
2.4 Security of WSNs ... 20
2.4.1 Security Requirements of WSNs ... 20
2.4.2 Denial-of-Sleep Attack ... 21
2.4.3 Energy Analysis of Security Algorithms ... 25
2.4.4 Light-Weight Security Schemes for WSNs ... 28
Chapter 3 Proposed Scheme ... 30
3.1 The Secure Topology Formation Stage ... 30
3.1.1 Phase I: Anti-node Detection ... 31
3.1.2 Phase II: Cluster Formation ... 32
3.1.2.1 Cluster-head Selection ... 32
3.1.2.2 Gateway Selection ... 33
3.1.3 Phase III: Key Distribution ... 33
3.1.4 Phase IV: Key Renewal ... 34
3.2 Design Principles of TE2S ... 34
3.2.1 Tier-1: Session Key Agreement ... 36
3.2.1.1 Sender-Initiated Scheme ... 37
3.2.1.2 Receiver-Initiated Scheme ... 38
3.2.2 Tier-2: Data Transmission ... 40
Chapter 4 Security and Energy Analysis ... 42
4.1 Security Analysis ... 42
4.1.1 Mutual Authentication ... 42
4.1.2 Secure Token Replay Attack ... 42
4.1.3 Forge Attack ... 43
4.1.3.1 Fake Preamble/Beacon ACK Attack ... 43
4,1.3.2 "Garbage" Data Attack ... 43
4.1.4 Jamming Attack ... 44
4.2 Energy Analysis ... 44
4.2.1 Period of Sleep ... 48
4.2.2 Preamble Computing Step ... 48
4.2.3 Preamble Transmitting Step ... 48
4.2.4 Computing and Listening Steps ... 49
4.2.5 Sending and Receiving Steps ... 50
Chapter 5 Simulation and Results ... 51
5.1 Simulation Model ... 51
5.2 Overall Results ... 57
5.2.1 Energy Consumption ... 58
5.2.2 Packet and Throughput Performance ... 61
5.3 Normal Condition, No Attacks ... 67
5.4 Anti-node Attack Conditions ... 70
5.4.1 Jamming Attack ... 70
5.4.2 General Attacks ... 73
5.5 Distributions of Energy Consumption ... 76
Chapter 6 Conclusion ... 81
References ... 83
Publication List ... 89
[1] Crossbow Technology Inc., “Crossbow MICA2DOT datasheet,” 2008.
[2] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” Communications Magazine, IEEE, vol.40, no.8, pp. 102-114, Aug 2002.
[3] Y. Li, M. T. Thai, and W. Wu, “Wireless Sensor Networks and Applications,” Springer, 2008.
[4] G. P. Halkes, T. V. Dam, and K. Langendoen, “Comparing energy-saving mac protocols for wireless sensor networks,” ACM Mobile Networks and Applications, vol. 10, no. 5, pp. 783-791, Oct. 2005.
[5] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials for wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol.12, no.2, pp. 222-248, Second Quarter 2010.
[6] J. Kabara, and M. Calle, “MAC protocols used by wireless sensor networks and a general method of performance evaluation,” International Journal of Distributed Sensor Networks, Vol. 2012, Article ID 834784, 11 pages, 2012.
[7] M. Li, Z. Li, and A. V. Vasilakos, “A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues,” Proceedings of the IEEE, Vol. 101, No. 12, pp. 2538-2557, 2013.
[8] R. Carrano, D. Passos, L. Magalhaes, and C. Albuquerque, “Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks,” Communications Surveys & Tutorials, IEEE, Vol. PP, No. 99, pp. 1-14, 2013.
[9] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey,” Communications Surveys & Tutorials, IEEE, Vol. 15, No. 1, pp. 101-120, 2013.
[10] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless sensor networks,” in Proc. INFOCOM, New York, 2002, pp. 1567- 1576.
[11] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for wireless sensor networks,” in ACM SenSys '03: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, USA, 2003, pp. 171-180.
[12] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor networks,” in Proc. ACM SenSys '04: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, USA, 2004, pp. 95-107.
[13] A. El-Hoiydi and J. -D. Decotignie, “WiseMAC: an ultra low power MAC protocol for multi-hop wireless sensor networks,” In Proc. ALGOSENSORS '04: Proceedings of the First International Workshop on Algorithmic Aspects of Wireless Sensor Networks, Lecture Notes in Computer Science, LNCS 3121, 2004, pp. 18-31.
[14] M. Buettner, G. V. Yee, E. Anderson and R. Han, “X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks,” in Proc. ACM SenSys '06: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, USA, 2006, pp. 307-320.
[15] Y. Sun, O. Gurewitz, and D. B. Johnson. “RI-MAC: a receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks.” In SenSys '08: Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, Raleigh, USA, Nov. 2008, pp. 1–14.
[16] A. Wood, and J. A. Stankovic, “Denial of service in sensor networks,” Computer , vol.35, no.10, pp. 54-62, Oct 2002.
[17] D. R. Raymond, and S. F. Midkiff, “Denial-of-service in wireless sensor networks: attacks and defenses,” Pervasive Computing, IEEE, vol.7, no.1, pp. 74-81, Jan.-March 2008.
[18] F. Stajano, and R. Anderson, “The resurrecting duckling: security issues for adhoc wireless networks,” Proceedings of the 7th International Workshop on Security Protocols, London, UK, 1999, pp. 172-194.
[19] M. Brownfield, Y. Gupta, and N. Davis, “Wireless sensor network denial of sleep attack,” in Proc. 6th Annual IEEE SMCIAW '05: Information Assurance Workshop, New York, USA, 2005, pp. 356-364.
[20] D. Raymond, R. Marchany, M. Brownfield and S. Midkiff, “Effects of denial of sleep attacks on wireless sensor network MAC protocols,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, Jan. 2009.
[21] R. Falk, and H.J. Hof, “Fighting insomnia: a secure wake-up scheme for wireless sensor networks,” in Proc. SECURWARE '09: Proceedings of the 3rd International Conference on Emerging Security Information, Systems and Technologies, Glyfada, Athens, 2009, pp. 191-196.
[22] C. T. Hsueh, C. Y. Wen, and Y. C. Ouyang, “A secure scheme for power exhausting attacks in wireless sensor networks,” in ICUFN 2011: Proceedings of the Third International Conference on Ubiquitous and Future Networks, Dalian, China, 2011, pp. 258-263.
[23] C. T. Hsueh, C. Y. Wen, and Y. C. Ouyang, “Two-tier receiver-initiated secure scheme for hierarchical wireless sensor networks,” in ITST 2012: Proceedings of the 12th International Conference on ITS Telecommunications, Taipei, Taiwan, 2012, pp. 254-258.
[24] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road ahead,” IEEE Communications Magazine, vol. 43, No. 12, pp. 112-119, Dec. 2005.
[25] J. L. Hill, and D. E. Culler, “Mica: a wireless platform for deeply embedded networks,” Micro, IEEE , vol.22, no.6, pp. 12-24, Nov/Dec 2002.
[26] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis, “Koala: Ultra-Low Power Data Retrieval in Wireless Sensor Networks,” In Proc. IPSN '08: Proceedings of the 7th international conference on Information processing in sensor networks, IEEE Computer Society, Washington, DC, USA, April 2008, pp. 421-432.
[27] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of security issues in wireless sensor networks,” Communications Surveys & Tutorials, IEEE , vol.8, no.2, pp. 2-23, Second Quarter 2006
[28] S. Ould Amara, R. Beghdad, and M. Oussalah, “Securing Wireless Sensor Networks: A Survey,” EDPACS, The EDP Audit, Control, and Security Newsletter, vol. 47, no. 2, pp. 6-29, February 2013.
[29] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches for distributed sensor network security,” NAI Labs, The Security Research Division, Glenwood, Tech. Rep. #00-010, Sept. 2000.
[30] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu, “Analyzing and modeling encryption overhead for sensor network nodes,” in Proc. ACM WSNA '03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, San Diego, USA, 2003, pp. 151-159.
[31] W. Liu, R. Luo, and H. Yang, “Cryptography overhead evaluation and analysis for wireless sensor networks,” in Proc. WRI CMC '09: Proceedings of the International Conference on Communications and Mobile Computing, Kunming, China, 2009, pp. 496-501.
[32] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless sensor networks,” Computer Networks, vol. 54, no. 17, pp 2967-2978, December 2010.
[33] Y. C. Ouyang, R. L. Chang, and J. H. Chiu, “A new security key exchange channel for 802.11 WLANs,” in Proc. IEEE ICCST: Proceedings of the 37th Annual International Carnahan Conference on Security Technology, Taipei, Taiwan, 2003, pp. 216-221.
[34] Y. C. Ouyang, C. B. Jang, and H. T. Chen, “A secure authentication policy for UMTS and WLAN interworking,” in Proc. IEEE ICC '07: Proceedings of the International Conference on Communications, Glasgow, 2007, pp. 1552-1557.
[35] Y. C. Ouyang, C. T. Hsueh, and H. W. Chen, “Secure authentication policy with evidential signature scheme for WLAN,” Security and Communication Networks, vol. 2, no. 3, pp. 259-270, May/June 2009.
[36] N. Haller, and C. Metz, “A one-time password system,” IETF RFC 2289, Feb. 1998.
[37] C. T. Hsueh, Y. W. Li, C. Y. Wen, and Y. C. Ouyang, “Secure adaptive topology control for wireless ad-hoc sensor networks,” Sensors, vol. 10, no. 2, pp. 1251-1278, 2010.
[38] K. T. Chu, C. Y. Wen, Y. C. Ouyang, and W. A. Sethares, “Adaptive distributed topology control for wireless ad-hoc sensor networks,” in Proc. SensorComm '07: Proceedings of the International Conference on Sensor Technologies and Applications, Valencia, Spain, 2007, pp. 378-386.
[39] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS: security protocols for sensor networks,” Wireless Networks, vol. 8, no. 5, pp. 521-534, 2002.
[40] T. Dimitriou and I. Krontiris, “A localized, distributed protocol for secure information exchange in sensor networks,” in Proc. IPDPS '05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, Denver, USA, 2005, pp. 240a.
[41] Crossbow Technology Inc., “Crossbow MICAz datasheet,” 2006.
[42] Atmel Corporation, “Atmel ATmega 128L datasheet,” 2009.
[43] Texas Instruments, “Chipcon CC2420 datasheet,” 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊