跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐紳彰
研究生(外文):Shen-Chang Hsu
論文名稱:使用粒子群-實數編碼基因演算法之太陽能熱泵溫水供應系統PID溫度控制
論文名稱(外文):PID Temperature Control Using PSO-RGA Algorithm for Warm Water Supply Systems with Solar Heat Pumps
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
口試委員:黃旭志呂奇璜
口試委員(外文):Hsu-Chih HuangChi-Huang Lu
口試日期:2104-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:太陽能水源熱泵系統溫度控制PID控制粒子群最佳化實數編碼基因演算法
外文關鍵詞:Solar water-source heat pump system (SWSHPS)temperature controlPID controlparticle swarm optimization (PSO)Real-coded Genetic algorithm(RGA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對提供半導體工廠及許多商業用途之太陽能水源熱泵溫水供應系統,使用粒子群演算法(PSO)及實數編碼基因演算法(RGA)來設計單迴路PID及雙迴路PID等兩種溫度控制策略,用以達成準確的水溫控制。溫度控制策略使用單迴路和雙迴路PID控制策略,其控制器的參數是藉由結合著名的粒子群演算法(PSO)與實數編碼演算法(RGA)在離線狀態所得到最佳化控制參數之搜尋,使該控制策略實現快速收斂和最佳控制。電腦性能比較模擬與實驗測試結果皆顯示此兩種PID控制策略對於溫水溫度設定點追蹤及強健特性皆可得到相當不錯的溫控成效與性能,而且雙迴路PID控制器可得到較好的暫態性能與較小的穩態誤差。這兩種控制策略都可以達成滿意的水源熱泵溫度控制。
This thesis presents two proportional-integral-derivative (PID) control methods for a class of warm water supply system with a solar water-source heat pump for semiconductor factories and many commercial applications. The proposed temperature controller employs a single-loop and two-loop PID control strategies whose controller’s parameters are off-line optimally selected by a combination of the well-known particle swarm optimization (PSO) and real-coded genetic algorithm (RGA). Both controllers are tuned by the proposed PSO-RGA method, in order to accomplish satisfactory transient responses and steady-state accuracy. Simulations and experimental results are conducted to show the effectiveness, robustness and merits of both proposed controllers via set-point tracking and parameter variations. The two-loop PID controller has a superior transient performance and smaller steady-state errors than the single-loop PID controller does. Both control strategies are shown to give satisfactory temperature control of the proposed warm water supply system.
Contents
Acknowledgements………………………………………i
Chinese Abstract……………………………………….. ii
English Abstract……………………………………….. iii
Contents………………………………………………….iv
List of Figures…………………………………………...vii
List of Tables……………………………………………..x
Nomenclature……………………………………………xi
List of Acronyms..................................................xii
Chapter.................................................................1 Introduction...........................................................1
1.1 Introduction………………………………………....1
1.2 Literature Review.............................................9
1.2.1 Literature Review of Heat Pumps and PID control……............................................................9
1.2.2 Literature Review of Particle Swarm Optimization….……………....................................11
1.2.3 Literature Review of RGA.............................11
1.3 Motivation and Objective………………………....12
1.4 Main Contributions ……………………………....13
1.5 Thesis Organization………………………………14
Chapter 2 System Structure, Modeling and Control Architecture.........................................................15
2.1 Introduction………………………………………..15
2.2 Physical System Structure………………………16
2.2.1 Structure of the water-source heat pump……..17
2.2.1.1 Compressor……………..…………………….19
2.2.1.2 Heat Exchanger………………………...........20
2.2.1.3 Air cooled outdoor machine………………….21
2.2.1.4 Expansion valves………………………………22
2.2.1.5 Evaporator……………………………………...23
2.2.2 PT100.........................................................23
2.2.3 Inverter……………………………………….......25
2.2.4 Adam-4000 series…………………………..…..27
2.2.4.1 Adam-4520…...……………………………….28
2.2.4.2 Adam-4017…...……………………………….29
2.2.4.3 Adam-4021…...……………………………....30
2.2.5 AdamView Software…………………………….31
2.3 Modeling and Validation.................................32
2.4 Control Architecture.......................................36
2.5 Concluding Remarks.............................................................38
Chapter 3 Single-Loop PID Control Using PSO-RGA Algorithm.............................................................39
3.1 Introduction...................................................39
3.2 PSO-RGA Algorithm……………………………..40
3.2.1 Particle Swarm Optimization………………….40
3.3 RGA Algorithm……………………………………42
3.3.1.Reproduction……………………………………..43
3.3.2. Crossover………………………………………..44
3.3.3. Mutation………………………………………....44
3.4 PSO combine RGA Algorithm…………………..45
3.5 Single-Loop PID Controller Design Using PSO-RGA Algorithm………...........................................47
3.6 Simulations and Discussion………………….....48
3.7 Experimental Results and Discussion..............53
3.8 Concluding Remarks......................................54
Chapter 4 Two-Loop PID Control Using PSO-RGA Algorithm.............................................................55
4.1 Introduction...................................................55
4.2 Two-Loop PID Control Structure......................56
4.3 Two-Loop PID Controller Design Using PSO-RGA Algorithm.............................................................58
4.4 Simulations and Discussion............................59
4.5 Experimental Results and Discussion..............64
4.6 Concluding Remarks......................................66
Chapter 5 Conclusions and Future Work…............67
5.1 Conclusions..................................................67
5.2 Future Work..................................................69
References..........................................................71
[1] G. A. Nowakowski, “An introduction and status update on unitary engine-driven heat pumps,” ASHRAE Transactions, pp.42–47, January 1996.
[2] Y. Hasegawa, T. Nakano, T. Fukuda, G. Vachkov, “Learning predictive control for gas heat pump,” Proc. of IEEE 26th Intern. Conf. of the IEEE Industrial Electronics Society (IECON2000), vol. 2, pp. 1062–7, Oct. 2000.
[3] K. I. Tsai, C. C. Tsai, “Cascaded Fuzzy Control for Air Source Heat Pumps, ” Proc. of the SICE Annual Conference 2010 (SICE 2010 in Taiwan), Taipei, Taiwan, August 2010.
[4] J. S. Chiou, M. T. Liu, “Numerical simulation for cascaded-PID controllers and helping EP reproduction with PSO hybrid algorithm” Simulation Modeling and Practice and Theory, vol. 17, pp.1555-1565, 2009.
[5] C. C. Tsai, K. I Tsai, C. T. Su, “Cascaded Fuzzy-PID Control Using PSO-EP Algorithm for Air Source Heat Pumps,” Proc. of the 2012 International Conference on Fuzzy Theory and Its Application, Taichung,
Taiwan, Nov. 16-18, 2012.
[6] H. Duan, Q. Luo ,G. Ma ,Y. Shi, “Hybrid Particle Swarm Optimization and Genetic Algorithm for Multi-UAV Formation Reconfiguration, ”IEEE Computational Intelligent Magazine, pp16-27,August 2013.
[7] J. Y. Wu, “Real-coded Genetic Algorithm-based Particle Swarm Optimization Method for Unconstrained Optimization Problems,” Proc. of Intern. Conf. on Electronics and Information Engineering (ICEIE), V1-194-V1-198, 2010.
[8] H.C Huang, S. C Lin, “Hybrid GA-PSO Algorithm for Inverse Kinematics of 7-DOF Robot,” Proc. of 2011 International Conference on Service and Interactive Robots National Chung Hsing University, Taichung, Taiwan, Nov.25-27,2011.
[9] M.W. Iruthayarajan, S. Baskar , “Optimization Of PID Parameters Using Genetic Algorithm And Particle Swarm Optimization,” Proc. of IET-UK International Conference on Information and Communication Technology in Electrical Science(ICTES 2007), Dr.M.G.R. University, Chennai, Tamil Nadu,India, pp.81-86, Dec. 20-22,2007.
[10] C. T. Su, PID Temperature Control Using PSO-EP Algorithm for Water-source Heat Pump Dryer, Master Thesis, Department of Electrical Engineering, National Chung Hsing University, July 2013.
[11] A. M. Omer“Ground-source heat pumps systems and applications,”Renewable and Sustainable Energy Reviews, vol. 12, pp. 344-371, 2008.
[12] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” Proceedings of IEEE International Conference on Neural Networks IV, pp.1942-1948, 1995.
[13] S.Y. Shi, R. Eberhart, “A Modified Particle Swarm Optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage AK, pp. 69-73, May 4-9 ,1998.
[14] M. Clerc, and J. Kennedy, “ The particle swarm-explosion, stability, and convergence in a multidimensional complex space, ” IEEE Transactions on Evolutionary Computation, vol.6, no. 1, pp. 58-73, 2002.
[15] A. Acan, A. Gunay, “Enhanced Particle Swarm Optimization through External Memory Support,” Proceeding of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.235-242, 2005.
[16] C. Cao, B. Zhou, M. Li, J. Du, “Digital Implementation of DTC Based on PSO for Induction Motor, ” Proceeding of the 6th world congress on Intelligent control and Automation, Dalian, China, pp. 6349 - 6352 June.21-23,2006.
[17] Z. Bingul, O. Karahan,“Tuning of Fractional PID Controllers Using PSO Algorithm for Robot Trajectory control, ” Proceeding of the 2011 IEEE International Conference on Mechatronics, Turkey, Istanbul, pp. 955- 960, April 13-15, 2011.
[18] S. Cao, J. Tu, H. Liu,“PSO Algorithm-Based Robust design of PID Controller for PMSM, ” Proceeding of 2010 Sixth International Conference on Natural Computation(ICNC2010), pp. 3513-3517, August 10-12,2010.
[19] G. Zhang, K. Zhang,“A Particle Swarm Optimization Approach for Optimal Design of PID Controller for Temperature Control in HVAC, ” Proceeding of 2011 Third International Conference on Measuring Technology and Mechatronics Automation, pp. 230 – 233, Jan 6-7,2011
[20] H. M. Asifa, Dr S.R.Vaishnav,“Particle Swarm Optimization Algorithm based PID Controller, ” Proceeding of Third International conference on Emerging Trends in Engineering and Technology, pp.628 – 631, Nov. 19-21,2010.
[21] S. F.. Chen,“Particle Swarm Optimization for PID Controller with Robust Testing, ” Proceeding of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, pp.956 - 961, August 19-22 , 2007.
[22] R.L. Haupt, S.E.Haupt, Practical Genetic Algorithms, John Wiley, Second Edition, May 2004.
[23] A. H. Wright, “Genetic algorithm for real parameter optimization,” Foundations of Genetic Algorithms 1,San Mateo, CA: Morgan Kaufmann, pp. 205-218,1991.
[24] B. Zhang, “A Heuristic Mutation operator for Evolutionary Neural Network, ” Proceeding of 2011 International Conference on Internet computing and Information Services(ICICIS), Hong Kong, pp. 506 -509, September 17-18 ,2011.
[25] J. C. Gallagher, S. Vigraham and G, Kramer, “A family of compact genetic algorithms for intrinsic evolvable hardware,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 111-126, 2004.
[26] Y. Lei, S. Li, X .Zhang, “Optimal Control Solving of Polymer Flooding Based on Real-coded Genetic Algorithm , ” Proceeding of the 8th world congress on Intelligent control and Automation(WCICA), Jinan, china, pp.5111- 5114, July 7-9, 2010.
[27] C. T. Wu, J. P. Tien, T. S. Li, “ Integration of DNA and Real Coded GA for the Design of PID-Like Fuzzy controllers, ” Proceeding of 2012 IEEE International Conference on Systems, Man , and Cybernetics(SMC), Seoul, pp. 2809- 2814 October 14-17, 2012.
[28] X. F Luo, A. Qing, C. K. Lee, “The design of Frequency Selective Surfaces (FSS) Using Real-Coded Genetic Algorithm(RGA), ” Proceeding of ICICS-PCM2003,Singapore, pp.391-395, December 15-18, 2003.
[29] J. Liu ,Y. Li, H. Zhao,“A Temperature Measurement System Based on PT100,” Proceeding of 2010 International on Electrical and Control Engineering, pp.296-298, 2010.
[30] Q. Song, G. Y. Hong, K. S. Hong,“Adaptive control for a multi-condenser inverter heat pump system,” Proceeding of International Conference on Control, Automation and Systems, KINTEX, Gyeonggi-do, Korea, pp.501-506, Oct.27-30, 2010.
[31] C. C. Tsai, K. I. Tsai, S. C. Hsu, S. f. Su, “Two-Loop PID Control Using PSO-RGA Algorithm for Solar Heat Pumps,” Proc. of 2014 International Conference on Machine Learning and Cybernetics, Lanzhou, China, 13-16 July, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊