跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃晨瑋
研究生(外文):Chen-Wei Huang
論文名稱:氧化鋅奈米柱金氧半結構應用於紫外光感測之研製
論文名稱(外文):Fabrication of metal/oxide/ZnO nanorods structures for ultraviolet photodetection
指導教授:賴聰賢
指導教授(外文):Tsong-Sheng Lay
口試委員:彭隆瀚林建中孫允武
口試委員(外文):Lung-Han Pengchien-chung LinYuen-Wu Suen
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:103
中文關鍵詞:氧化鋅奈米柱水熱法紫外光感測器
外文關鍵詞:ZnO nanorodshydrothermal methodUV photodetector
相關次數:
  • 被引用被引用:2
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討在氧化鋅摻鋁(AZO)晶種層上以水熱法成長氧化鋅奈米柱,藉由改變晶種層濺鍍成長溫度以及爐管熱回火溫度來研究氧化鋅奈米柱,並在其表面沉積氧化層,研究其結構、光學特性。最後將氧化鋅奈米柱製作成金氧半結構之紫外光感測器,在照射紫外光之下量測其I-V特性曲線,顯示紫外光照射氧化鋅會產生電子電洞對,而電子會以穿隧電流的機制穿過氧化層,形成光電流。
隨著濺鍍溫度以及熱回火溫度的增加,AZO薄膜的導電性也會變好,回火溫度為500度六十分鐘電阻率可達2.1x10-3 Ω cm,溫度也會影響氧化鋅奈米柱直徑(約60nm)與高度(約774nm),而氧化鋅奈米柱的密度並未因為溫度而明顯變化(約1010cm-2)。以XRD觀察氧化鋅奈米柱的結晶品質,在(0002)位置有很強的訊號(19887 a.u.)及很窄的半高寬(0.3 degree)。PL光激發量測可看到約在380nm附近處有強烈的紫外光發光峰值,而沉積二氧化鉿於氧化鋅奈米柱之上發現其半高寬由42nm改善為17nm,表示可以有效的減少表面缺陷以及抑制缺陷發光。
氧化鋅奈米柱製作金氧半結構之紫外光感測器具有良好的整流效果,整流率在±1V有52.28,量測其在紫外光照射下的光電響應,氧化層為二氧化鉿之元件在照射紫外光(365nm)與未照光在偏壓為1V之電流比值為2.01。從光響應度的量測可看出紫外光對可見光的比值在偏壓為1V時可達40.72,表示元件對紫外光有極佳的分辨率。
In this study, metal-oxide-ZnO nanorods(NRs) structures were fabricated for the ultra-violet(UV) photodetector applications. ZnO NRs were grown on Al-doped ZnO(AZO) seed layers were grown by RF sputtering. The growth temperature and annealing condition of AZO seed layers were investigated to optimize the growth of ZnO NRs. The AZO resistivity reaches 2.1x10-3 Ω cm at annealing temperature = 500°C for 60 minute. The ZnO NRs have a diameter ~60nm and height ~774nm and areal density ~1010 cm-2. The X-ray diffraction spectra for the ZnO NRs show a strong peak at (0002) with a narrow full-width of half-maximum(FWHM) = 0.3°. The good quality of crystallization also evidenced by the PL spectroscopy. A prominent peak at wavelength λ= 380 nm is observed with FWHM = 42nm. As we deposited HfO2 on the ZnO NRs surface by atomic layer deposition (ALD). The FWHM decreases to 17nm. The result indicates that the HfO2 passivation reduces the surface state density and the photoemission from traps. The UV photodetectors of metal-HfO2-ZnO NRs structure show a good UV photodetectors of rectifying I-V characteristics. The rectifying factor =52.28 at ±1V . Under UV light (λ=365 nm), the current increases 2 times higher than the device biased at 1V in dark. The responsivity spectra show the device has a good UV/visible ratio = 40.7 under 1V bia
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 4
第二章 理論基礎與文獻回顧 6
2.1 氧化鋅的晶體結構與基本特性 6
2.1.1 氧化鋅簡介 6
2.1.2 氧化鋅的光學特性 9
2.1.3 氧化鋅於透明導電膜的應用 10
2.1.4 氧化鋅摻鋁於明導電薄膜的應用 11
2.2 水熱法介紹 12
2.2.2 水熱法應用於氧化鋅奈米柱的合成 12
第三章 實驗步驟與儀器介紹 17
3.1 實驗流程與分析 17
3.2 基板切割與清洗流程 18
3.3氧化鋅奈米柱成長 19
3.3.1 射頻濺鍍系統(RF power sputtering system) 19
3.3.2 以水熱法(Hydro thermal method)成長氧化鋅奈米柱 23
3.3.3 掃描式電子顯微鏡(Scanning electron microscopy) 25
3.4 原子層沉積技術 27
3.5 爐管熱回火(furnaceanneal) 28
3.6 霍爾效應量測系統(Hall effect measurement system) 29
3.7紫外線可見光光譜儀(Ultraviolet Visible Spectrometer) 33
3.8 橢圓儀 34
3.9 X光繞射儀(X-ray diffraction, XRD) 35
3.10 光激螢光量測(Photoluminescence, PL) 36
3.11 熱蒸鍍機(Thermal Evaporation) 38
3.12 量子效率與響應率 39
3.13 紫外光感測器之元件製程 40
3.13.1 元件製程結構示意圖 40
3.13.2 製程步驟 40
第四章 實驗結果與討論 42
4.1 表面氧化層對於氧化鋅奈米柱的影響 42
4.1.1 氧化鋅奈米柱SEM分析 42
4.1.2 氧化鋅奈米柱XRD分析 64
4.1.3 氧化鋅奈米柱之光激螢光(PL)分析 66
4.1.4 紫外光/可見光譜儀之穿透率與反射率分析 72
4.2 金氧半紫外光檢測器分析 83
4.2.1 元件電流電壓分析 84
4.2.2 元件光響應度分析 92
第五章 結論 99
參考文獻 100
[1] WTEC panel report on Nanostructure Science and Technology,
International Technology Research Institute, Dec. 1998, Maryland, USA.
[2] 維基百科 http://en.wikipedia.org/wiki/Main_Page
[3] M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa and
T. Sakata, J. Geomagn. Geoelectr. 45, 473 (1993
[4] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,”
J.Appl.Phys., vol. 79, pp. 7433-7473, (1996)
[5] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.Blasingame, L.
F. Reitz ,”High-responsivity photoconductiveultraviolet sensors based on
insulating single-crystal GaN epilayers”,Appl. Phys. Lett. Vol. 60,pp. 2917
(1992)
[6] Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, “Visible-blind ultraviolet
photodetectors vased on GaN p-n junctions”, Electron. Lett Vol. 31,pp. 1781
(1995)
[7] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz, M. Razeghi,
“Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett Vol.72, pp. 3303
(1988)
[8] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J. A. Munoz,
“AlxGa1-xN: Si Schottky barrier photodiodes with fast response and high
detectivity”, Appl. Phys. Lett. Vol. 73, pp. 2146(1998)
[9] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.Diaz,
M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet
photodetectors based on GaN”, Appl. Phys. Lett. Vol. 74, pp. 762(1999)
101
[10] Yungting Chen, Tzuhuan Cheng, Chungliang Cheng, Chunhsiung Wang,
Chihwei Chen, “Highly sensitive MOS photodetector with wide band
responsivity assisted by nanoporous anodic aluminum oxide membrane” 4
January 2010 / Vol. 18, No. 1 / OPTICS EXPRESS 56 Chihming Wei and
YangFang Chen
[11] D. H. Zhang and D. E. Brodie, “Crystallite orientation and the related
photoresponse of hexagonal ZnO films deposited by r.f. sputtering”, Thin Solid
Films 251 (1994) 251.
[12] S. A. Studenikin, N. Golego, and M. Cocivera, “Carrier mobility and
density contributions to photoconductivity transients in polycrystalline ZnO
films”, J. Appl. Phys. 87 (2000) 2413.
[13] D. H. Zhang, “Fast photoresponse and the related charge of crystallite
barriers for ZnO films deposited by RF sputtering”, J. Phys. D 28 (1995) 1273.
[14] J. Goldburger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang,
“Single-crystal gallium nitride nanotubes”, Nature 422 (2003) 599.
[15] H. J. Queisser and E. E. Haller, “Defects in semiconductors: Some Fatal,
Some Vital”, Science 281 (1998) 945.
[16] W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods
through a carbon nanotube-confined reaction”, Science 277 (1997) 1287.
[17] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic
growth of zinc oxide nanowires by vapor transport”, Adv. Mater. 13 (2001)
113.
[18] wikipedia (http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png)
[19] S. Wagner , W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
[20] Mang, K. Reimann, S. Rübenacke, Solid State Commun., 94 (1995) 251.
102
[21] S.J. Peartona, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner,” Recent progress in
processing and properties of ZnO”, Superlattices and Microstructures 34 (2003)
3–32
[22] Z. Jin, K. Moulding, H.S. Kwok, M. Wang, “The effects of extended heat
treatment on Ni induced lateral crystallization of amorphous silicon thin films”,
Ieee Transactions on Electron Devices, Vol.46, pp.77-82, 1999
[23] K.U.M. Kumar, M.G. Krishna, “Chromium-induced nanocrystallization of
a-Si thin films into the wurtzite structure”, Journal of Nanomaterials, Vol.2008,
2008
[24] M.A. Mohiddon, K L.Naidu, M.G. Krishna,G. Dalba, F.Rocca, “Growth,
optical, and electrical properties of silicon films produced by the metal-induced
crystallization process”, Journal of Nanoparticle Research, Vol13,
pp.5999-6004, 2011
[25] 胡竣傑, 陳英忠, “室溫濺鍍氧化鋅薄膜之發光特性研究”, 國立中山
大學碩士論文, 民國九十四年.
[26] F. Li, Z. Li, and F. J. Jin “Structural and luminescent properties of ZnO
nanorods prepared from aqueous solution”, Mater Lett. 61 (2007) 1876.
[27] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt
“Mechanisms behind green photoluminescence of in ZnO phosphor powders”,
J. Appl. Phys. 79 (1996) 7983.
[28] M. Law, L. E. Greene, J.C. Johnson, R. Saykally, and P. Yang, “Nanowire
dye-sensitized solar cells”, Nature materials 4 (2005) 455.
[29] S. Wagner , W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
[30] L. Vayssieres, “Designing ordered nanoarrays from aqueous solutions”,
Pure Appl. Chem. 78 (2006) 1741.
103
[31] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetogluand Y.
Lu, “Delective MOCVD growth of ZnO nanotops”, IEEE Tran. On
Nanotechnology 2(2003)50.
[32] R.W. Nosker, P. Mark, J.D. Levine, “Polar surfaces of wurtzite and
zincblende lattices”, Surf. Sci. 19 (1970) 291.
[33] Z. Wang et al. ”Aqueous solution fabrication of large-scale arrayed
obelisk-like zinc oxide nanorods with high effenciency” / Journal of solid state
chemistry 177 (2004) 2144-2149
[34] L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist “Three-dimensional
array of highly oriented crystalline ZnO microtubes,” Chem. Mater., 13
4395-4398 (2001) [35] Z.R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M.J.
Mcdermott “Biomimetic arrays of oriented helical ZnO nanorods and columns,”
J. Am. Chem. Soc., 124 12954-12955 (2002)
[36] K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien “ Understanding
the factors that govern the deposition and morphology of thin films of ZnO
from aqueous solution,” J . Mater . Chem., 14 2575–2591 (2004)
[37] Quanchang Li, Vageesh Kumar, Yan Li, Haitao Zhang, Tobin J. Marks,
and Robert P. H. Chang “Fabrication of ZnO Nanorods and Nanotubes in
Aqueous Solutions” Chem. Mater. 2005, 17, 1001-1006
[38] 維基百科 http://en.wikipedia.org/wiki/Main_Page
[39] 維基百科 http://en.wikipedia.org/wiki/Main_Page
[40] Azároff, L. V.; R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, R. A.
Young. X-ray diffraction. McGraw-Hill. 1974.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊