|
[1] H. Schoder, M. Gonen, Screening for cancer with PET and PET/CT: potential and limitations, Journal of Nuclear Medicine, 48 Suppl 1:4–18, 2007. [2] T. G. Gleeson, S. Bulugahapitiya, Contrast-Induced Nephropathy, American Journal of Roentgenology, 183: 1673–1689, 2004. [3] I. Goldenberg, S. Matetzky, Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies, Canadian Medical Association , 172: 1461–1471, 2005. [4] L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad. Nanoparticles in medicine: therapeutic applications and developments. "Clinical Pharmacology and Therapeutics 83, 761–69, 2008. [5] M. E. R. O’Brien1, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/DoxilR) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Annals of Oncology, 15, 440-449, 2004. [6] A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave. Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan. Journal of Oncology, 19, 3312-3322, 2001. [7] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem, G. Brufman. A. Gabizon. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 89, 1037-1047, 2000. [8] N. D. Santos, C. Allen, A.-M. Doppen, M. Anantha, K. A.K. Cox, R. C. Gallagher, G. Karlsson, K. Edwards, G. Kenner, L. Samuels, M. S. Webb, M. B. Ball, Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768, 1367-137, 2007. [9] A. A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Advanced Drug Delivery Reviews, 16, 285-294, 1995. [10] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003 2(5):347-60. [11] Paoli EE, Kruse DE, Seo JW, Zhang H, Kheirolomoom A, Watson KD, Chiu P, Stahlberg H, Ferrara KW. An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation. J Control Release. 2010; 143(1):13-22. [12] I. Goldenberg, S. Matetzky. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ, 172, 1461-1471, 2005. [13] P. B. Persson, P. Hansell, P. Liss, Pathophysiology of contrast medium–induced nephropathy. Kidney International, 68, 14–22, 2005. [14] M. Tepel, P. Aspelin, N. Lameire. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation, 113, 1799-1806, 2006. [15] R. Solomon. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 68, 2256-63, 2005. [16] D. R. Martin, R. C. Semelka, A. Chapman, H. Peters, P. J. Finn, B. Kalb, H. Thomsen. Nephrogenic systemic fibrosis and contrast agent induced nephropathy: risks and benefits of contrast-enhanced MR and CT in renally impaired patients. J Magn Reson Imaging. 30, 1350-6, 2009. [17] J. L. Abraham, C. Thakral. Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol. 66, 200-7, 2008. [18] M. A. Sieber, H. Pietsch, J. Walter, W. Haider, T. Frenzel, H.-J. Weinmann. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Investigative Radiology, 43, 65-75, 2008. [19] R. Mehran, E. Nikolsky, Contrast-induced nephropathy: definition,epidemiology, and patients at risk, Kidney International Supplements, 69:511–515, 2006. [20] C. Briguori, D. Tavano, A. Colombo, Contrast agent –associated nephrotoxicity, Progress in Cardiovascular Diseases, 445:493–503, 2006. [21] P.B. Persson, P. Hansell, P. Liss, Pathophysiology of contrast medium–induced nephropathy, Kidney International , 68:14–22, 2005. [22] M. Tepel, P. Aspelin, N. Lameire, Contrast-induced nephropathy:a clinical and evidence-based approach, Circulation , 113: 1799–1806, 2006. [23]李惠娟,顯影劑引起之腎毒性,成醫藥誌第十九卷第五期,2009 [24] R. Solomon, The role of osmolality in the incidence of contrastinduced nephropathy: a systematic review of angiographic contrast media in high risk patients, Kidney International, 68:2256–2263, 2005. [25] M. R. Rudnick, A. Kesselheim, S. Goldfarb, Contrast-induced nephropathy: how it develops, how to prevent it, Cleveland Clinic Journal of Medicine, 73:75–80, 2006. [26] L. Paul, Iobitridol, Clinical Drug Investigation, 33:155–166, 2013. [27] H. Fattahi, S. Laurent, F. Liu, N. Arsalani, E. L. Vander, R. N. Muller, Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics, Nanomedicine (london england), 6:529–544, 2011. [28] K. Na, S. A. Lee, S. H. Jung, B. C. Shin, Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics , Colloids and Surfaces B: Biointerfaces, 84:82–87, 2011.
[29] G. Romano, C. Briguori, C. Quintavalle, C. Zanca, N. V. Rivera, A. Colombo, G. Condorelli, Contrast agents and renal cell apoptosis, European Heart Journal, 20:2569–2576, 2008. [30] M. Brezis, A. S. Rosen, Hypoxia of the renal medulla: its implications for disease, The New England Journal of Medicine, 332: 647–655, 1995. [31] U. Veronesi, P. Boyle, A. Goldhirsch, R. Orecchia, G. Viale, Breast cancer, The Lancet, 365:1727–1741, 2005. [32] W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, O. B. Ioffe, Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer, Radiology, 233:830– 849, 2004. [33] A. Dencausse, X. Violas, H. Feldman, P. Havard, C. Chambon, Pharmacokinetic profile of iobitridol, Acta radiologica Supplementum, 400:25–34, 1996. [34] J. M. Idee, C. Bault, H. Beaufils, C. Berthommier, J. Cambar, C. Corot, D. Doucet, C. Hartl, M. C. Jaudon, C. Jacquiaud, B. Lakhdar, M. Potier, R. santus, S. Torcherie, E. Vaudon, B. Bonnemain, Pharmacologic profile of iobitridol, a nonionic iodinated contrast medium, Acta radiologica Supplementum, 400:35–48, 1996. [35] D. E. Rollins, C. D. Klaassen, Biliary excretion of drugs in man, Clinical Pharmacokinetics, 4:368–379, 1979. [36] N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents, Advanced Materials, 25:2641–2660, 2013. [37] I. Bekersky, R. M. Fielding, D. E. Dressler, J. W. Lee, D. N. Buell, T. J. Walsh, Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans, Antimicrobial Agents and Chemotherapy, 46:828–33, 2002. [38] L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments , Clinical Pharmacology & Therapeutics, 83:761–769, 2007. [39] M. E. O'Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl(CAELYX/Doxil) versus conventional doxorubicin for first –line treatment of metastatic breast cancer, Annals of Oncology, 15: 440–449, 2004. [40] A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave, Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan, Journal of Clinical Oncology , 19:3312–3322, 2001. [41] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem , G. Brufman, A. Gabizon, Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma, Cancer. , 89:1037–1047, 2000. [42] K. B. Ghaghada, R. R. Colen, C. R. Hawley, N. Patel, S. Jr. Mukundan, Liposomal contrast agents in brain tumor imaging, Neuroimaging Clinicsof North America, 20:367–378, 2010. [43] R. Saito, M. T. Krauze, J. R. Bringas, C. Noble, T. R. McKnight, P. Jackson , M. F. Wendland, C. Mamot , D. C. Drummond, D. B. Kirpotin, K. Hong, M. S. Berger, J. W. Park, K. S. Bankiewicz, Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain, Experimental Neurology, 196:381–389, 2005. [44] K. B. Ghaghada, M. Ravoori, D. Sabapathy, J. Bankson, V. Kundra, A. Annapragada, New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging, Academic Journal, 4: 1–7, 2009. [45] W. J. Mulder, G. J. Strijkers, J. W. Habets, E. J. Bleeker, D. W. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, K. Nicolay, MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, The FASEB Journal, 19:2008–2010, 2005. [46] C. T. Badea, K. K. Athreya, G. Espinosa, D. Clark, G. A. Paiman, Y. Li, D. G. Kirsch, J. G. Allan, A. Annapragada, K. B. Ghaghada, Computed tomography imaging of primary lung cancer in mice using a liposomal–iodinated contrast agent, Academic Journal, 7:1–7, 2012. [47] A. Havron, S. E. Seltzer, M. A. Davis, P. Shulkin, Radiopaque Liposomes: a promising new contrast material for computed tomography of the spleen, Radiology, 140:507–511, 1981. [48] P. J. Ryan, M. A. Davis, L. R. DeGaeta, B. Woda, D. L. Melchior, Liposomes loaded with contrast material for image enhancement in computed tomography–work in progress, Radiology, 152:759–762, 1984. [49] E. E. Paoli, D. E. Kruse, J. W. Seo, H. Zhang, A. Kheirolomoom, K. D. Watson, P. Chiu, H. Stahlberg, K. W. Ferrara, An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation, Journal of Controlled Release, 143:13–22, 2010. [50] AVESTIN, Inc. and AVESTIN Europe GmbH http://www.avestin.com/ [51] D. J. George, Quasielastic light scattering, American Chemical Society, 62:1049–1057, 1990. [52] D. J. George, Quasielastic light scattering, American Chemical Society, 62:1049–1057, 1990. [53] Royal Philips http://www.philips.com.tw/
|