跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周榆翔
研究生(外文):Yu-Hsiang Chou
論文名稱:以小鼠模型探討微脂體包覆預防電腦斷層掃描顯影劑誘發腎病變的潛能
論文名稱(外文):Potential of Contrast Medium Induced Nephropathy Prevention by Liposome Encapsulation: In Vivo Mice Study
指導教授:廖國智廖國智引用關係
指導教授(外文):Kuo-Chih Liao
口試委員:王國禎張譽鐘
口試日期:2014-01-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:38
中文關鍵詞:微脂體電腦斷層顯影劑
外文關鍵詞:liposomecomputed tomographycontrast medium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以小鼠為模型探討微脂體包覆改變電腦斷層顯影劑於腎臟累積的動態變化。初步研究結果證實,隨著微脂體的包覆率提升,顯影劑於注射後各時間點在腎臟平均累積量相對呈現下降的趨勢,在30-300min期間最明顯達減少50-76%;且於注射後各時間點在腎臟達細胞毒性濃度的範圍大幅縮減,且集中於非腎病變好發的腎髓質區而集中於腎盂處。
The aim of the research is to investigate the influence of liposome encapsulation on the computed tomography (CT) contrast medium (CM) accumulation kinetics in kidney. The preliminary results indicated that encapsulation of CM in liposome could significantly reduce the mean accumulation concentration in kidney, especially between 30-300min for achieving 50-76% reduction; and also resulted in narrower harmful iodine dosage (> 18 mg/ml) distribution.
摘要……………………………………………………………………………………i
Abstract………………………………………………………………………………ii
Index…………………………………………………………………………………iii
Index of table…………………………………………………………………………iv
Index of figures………………………………………………………………………v
Chapter 1 Introduction………………………………………………………………1
1.1 Background…………………………………………………………………1
1.2 Purpose………………………………………………………………………4
Chapter 2 Literature survey……………………………………………………………8
2.1 Contrast medium-induced nephropathy……………………………………8
2.2 Classification of contrast medium……………………………………………8
2.3 Mechanisms of contrast medium-induced nephropathy……………………10
2.4 Clearance path of contrast medium…………………………………………12
2.5 Applications of liposome in CT……………………………………………14
Chapter 3 Materials and methods……………………………………………………15
3.1 Equipment…………………………………………………………………15
3.2 Materials and drugs…………………………………………………………15
3.3 Experimental methods………………………………………………………16
3.3.1 Formulation of contrast medium coated in liposomes………………16
3.3.2 Analysis of liposome particle size distribution (stability) …………17
3.4 CT image analysis…………………………………………………………18
3.5 MATLAB image analysis…………………………………………………19
Chapter 4 Results and discussion……………………………………………………22
4.1 Quantitative analysis about encapsulation rate of liposome to CT contrast medium by using X-ray images……………………………………………………23
4.2 Influence of liposomes-coated to contrast medium accumulated in the kidneys………………………………………………………………………………24
Chapter 5 Conclusion………………………………………………………………33
Referrence……………………………………………………………………………34
[1] H. Schoder, M. Gonen, Screening for cancer with PET and PET/CT: potential and limitations, Journal of Nuclear Medicine, 48 Suppl 1:4–18, 2007.
[2] T. G. Gleeson, S. Bulugahapitiya, Contrast-Induced Nephropathy, American Journal of Roentgenology, 183: 1673–1689, 2004.
[3] I. Goldenberg, S. Matetzky, Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies, Canadian Medical Association , 172: 1461–1471, 2005.
[4] L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad. Nanoparticles in medicine: therapeutic applications and developments. "Clinical Pharmacology and Therapeutics 83, 761–69, 2008.
[5] M. E. R. O’Brien1, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/DoxilR) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Annals of Oncology, 15, 440-449, 2004.
[6] A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave. Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan. Journal of Oncology, 19, 3312-3322, 2001.
[7] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem, G. Brufman. A. Gabizon. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 89, 1037-1047, 2000.
[8] N. D. Santos, C. Allen, A.-M. Doppen, M. Anantha, K. A.K. Cox, R. C. Gallagher, G. Karlsson, K. Edwards, G. Kenner, L. Samuels, M. S. Webb, M. B. Ball, Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768, 1367-137, 2007.
[9] A. A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Advanced Drug Delivery Reviews, 16, 285-294, 1995.
[10] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003 2(5):347-60.
[11] Paoli EE, Kruse DE, Seo JW, Zhang H, Kheirolomoom A, Watson KD, Chiu P, Stahlberg H, Ferrara KW. An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation. J Control Release. 2010; 143(1):13-22.
[12] I. Goldenberg, S. Matetzky. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ, 172, 1461-1471, 2005.
[13] P. B. Persson, P. Hansell, P. Liss, Pathophysiology of contrast medium–induced nephropathy. Kidney International, 68, 14–22, 2005.
[14] M. Tepel, P. Aspelin, N. Lameire. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation, 113, 1799-1806, 2006.
[15] R. Solomon. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 68, 2256-63, 2005.
[16] D. R. Martin, R. C. Semelka, A. Chapman, H. Peters, P. J. Finn, B. Kalb, H. Thomsen. Nephrogenic systemic fibrosis and contrast agent induced nephropathy: risks and benefits of contrast-enhanced MR and CT in renally impaired patients. J Magn Reson Imaging. 30, 1350-6, 2009.
[17] J. L. Abraham, C. Thakral. Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis. Eur J Radiol. 66, 200-7, 2008.
[18] M. A. Sieber, H. Pietsch, J. Walter, W. Haider, T. Frenzel, H.-J. Weinmann. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Investigative Radiology, 43, 65-75, 2008.
[19] R. Mehran, E. Nikolsky, Contrast-induced nephropathy: definition,epidemiology, and patients at risk, Kidney International Supplements, 69:511–515, 2006.
[20] C. Briguori, D. Tavano, A. Colombo, Contrast agent –associated nephrotoxicity, Progress in Cardiovascular Diseases, 445:493–503, 2006.
[21] P.B. Persson, P. Hansell, P. Liss, Pathophysiology of contrast medium–induced nephropathy, Kidney International , 68:14–22, 2005.
[22] M. Tepel, P. Aspelin, N. Lameire, Contrast-induced nephropathy:a clinical and evidence-based approach, Circulation , 113: 1799–1806, 2006.
[23]李惠娟,顯影劑引起之腎毒性,成醫藥誌第十九卷第五期,2009
[24] R. Solomon, The role of osmolality in the incidence of contrastinduced nephropathy: a systematic review of angiographic contrast media in high risk patients, Kidney International, 68:2256–2263, 2005.
[25] M. R. Rudnick, A. Kesselheim, S. Goldfarb, Contrast-induced nephropathy: how it develops, how to prevent it, Cleveland Clinic Journal of Medicine, 73:75–80, 2006.
[26] L. Paul, Iobitridol, Clinical Drug Investigation, 33:155–166, 2013.
[27] H. Fattahi, S. Laurent, F. Liu, N. Arsalani, E. L. Vander, R. N. Muller, Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics, Nanomedicine (london england), 6:529–544, 2011.
[28] K. Na, S. A. Lee, S. H. Jung, B. C. Shin, Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics , Colloids and Surfaces B: Biointerfaces, 84:82–87, 2011.

[29] G. Romano, C. Briguori, C. Quintavalle, C. Zanca, N. V. Rivera, A. Colombo, G. Condorelli, Contrast agents and renal cell apoptosis, European Heart Journal, 20:2569–2576, 2008.
[30] M. Brezis, A. S. Rosen, Hypoxia of the renal medulla: its implications for disease, The New England Journal of Medicine, 332: 647–655, 1995.
[31] U. Veronesi, P. Boyle, A. Goldhirsch, R. Orecchia, G. Viale, Breast cancer, The Lancet, 365:1727–1741, 2005.
[32] W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, O. B. Ioffe, Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer, Radiology, 233:830– 849, 2004.
[33] A. Dencausse, X. Violas, H. Feldman, P. Havard, C. Chambon, Pharmacokinetic profile of iobitridol, Acta radiologica Supplementum, 400:25–34, 1996.
[34] J. M. Idee, C. Bault, H. Beaufils, C. Berthommier, J. Cambar, C. Corot, D. Doucet, C. Hartl, M. C. Jaudon, C. Jacquiaud, B. Lakhdar, M. Potier, R. santus, S. Torcherie, E. Vaudon, B. Bonnemain, Pharmacologic profile of iobitridol, a nonionic iodinated contrast medium, Acta radiologica Supplementum, 400:35–48, 1996.
[35] D. E. Rollins, C. D. Klaassen, Biliary excretion of drugs in man, Clinical Pharmacokinetics, 4:368–379, 1979.
[36] N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents, Advanced Materials, 25:2641–2660, 2013.
[37] I. Bekersky, R. M. Fielding, D. E. Dressler, J. W. Lee, D. N. Buell, T. J. Walsh, Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans, Antimicrobial Agents and Chemotherapy, 46:828–33, 2002.
[38] L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments , Clinical Pharmacology & Therapeutics, 83:761–769, 2007.
[39] M. E. O'Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl(CAELYX/Doxil) versus conventional doxorubicin for first –line treatment of metastatic breast cancer, Annals of Oncology, 15: 440–449, 2004.
[40] A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave, Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan, Journal of Clinical Oncology , 19:3312–3322, 2001.
[41] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem , G. Brufman, A. Gabizon, Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma, Cancer. , 89:1037–1047, 2000.
[42] K. B. Ghaghada, R. R. Colen, C. R. Hawley, N. Patel, S. Jr. Mukundan, Liposomal contrast agents in brain tumor imaging, Neuroimaging Clinicsof North America, 20:367–378, 2010.
[43] R. Saito, M. T. Krauze, J. R. Bringas, C. Noble, T. R. McKnight, P. Jackson , M. F. Wendland, C. Mamot , D. C. Drummond, D. B. Kirpotin, K. Hong, M. S. Berger, J. W. Park, K. S. Bankiewicz, Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain, Experimental Neurology, 196:381–389, 2005.
[44] K. B. Ghaghada, M. Ravoori, D. Sabapathy, J. Bankson, V. Kundra, A. Annapragada, New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging, Academic Journal, 4: 1–7, 2009.
[45] W. J. Mulder, G. J. Strijkers, J. W. Habets, E. J. Bleeker, D. W. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, K. Nicolay, MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, The FASEB Journal, 19:2008–2010, 2005.
[46] C. T. Badea, K. K. Athreya, G. Espinosa, D. Clark, G. A. Paiman, Y. Li, D. G. Kirsch, J. G. Allan, A. Annapragada, K. B. Ghaghada, Computed tomography imaging of primary lung cancer in mice using a liposomal–iodinated contrast agent, Academic Journal, 7:1–7, 2012.
[47] A. Havron, S. E. Seltzer, M. A. Davis, P. Shulkin, Radiopaque Liposomes: a promising new contrast material for computed tomography of the spleen, Radiology, 140:507–511, 1981.
[48] P. J. Ryan, M. A. Davis, L. R. DeGaeta, B. Woda, D. L. Melchior, Liposomes loaded with contrast material for image enhancement in computed tomography–work in progress, Radiology, 152:759–762, 1984.
[49] E. E. Paoli, D. E. Kruse, J. W. Seo, H. Zhang, A. Kheirolomoom, K. D. Watson, P. Chiu, H. Stahlberg, K. W. Ferrara, An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation, Journal of Controlled Release, 143:13–22, 2010.
[50] AVESTIN, Inc. and AVESTIN Europe GmbH http://www.avestin.com/
[51] D. J. George, Quasielastic light scattering, American Chemical Society, 62:1049–1057, 1990.
[52] D. J. George, Quasielastic light scattering, American Chemical Society, 62:1049–1057, 1990.
[53] Royal Philips http://www.philips.com.tw/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊