1. 吳朗,感測與轉換:原理、元件與應用,全欣資訊,(1992)。
2. 周瑞福,氣體感測器原理與應用,三聯科技股份有限公司,專題報導,(1990),25-37。
3. 吳峰日,感測器與轉換器,文笙出版社,(1990)。
4. 黃炳照、莊睦賢,電化學感測器,化工技術,7(2),(1999),151-161.。5. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Review. Lett., 39 (1977) 1098-1101.
6. H. Shirakawa, The Discovery of polyacetylene film: The Dawing of An Era of Conducting polymer(Nobel Lecture), Angewandte Chemie Iternational ed., 40(14) (2001) 2574-2580.
7. H. Shirakawa and S. Ikeda, Infrared Spectra of Poly(acetylene), Polym. J., 2 (1971) 231-244.
8. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers : Halogen Derivatives of Polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun., 16 (1977) 578-580.
9. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer and L. W. Shacklette, Structural Basis for Semiconducting and Metallic Polymer Dopant Systems, Chem. Rev., 82 (1982) 209-222.
10. A. F. Diaz, K. K. Kanazdwd, Polypyrrole : An Electrochemical Approach to Conducting Polymers, Extended linear chain compunds, J. S. Miller, ed. Plenum, New York (1982) 417-441.
11. K. Kaneto, S. Ura, K. Yoshino and Y. Inuishi, Optical and Electrical Properties of Electrochemically Doped n- and p-type Polythiophenes, Jap. J. Appl. Phys., 23 (1984) 189-191.
12. N. L. D. Somasiri and A. G. Maciarmid, Polyaniline: Characterization as a Cathode Active Material in Rechargeable Batteries in Aqueous Electrolytes, J. Appl. Electrochem., 18 (1988) 92-95.
13. C. Kittel, Introduction to Solid State Physics, 6th ed., John Wiley &; Sons, Singapore (1986).
14. A. S. Wood, Tapping the Power of Intrinsic Conductivity, Modern Plastic Int., 8(1991) 33.
15. M. G. Kanatzidls, C. G. Wu, H. O. Marcy, D. C. DeGroot, and C. R. Kannewurf, Conductive Polymer/Oxide Bronze Nanocomposites. Intercalated Polythiophene in V205 Xerogels. Chem. Mater., 2 (1990) 222-224.
16. 徐若韶,電致發光電池中電解質的結構及物性探討,中央大學化學研究碩碩士論文,(2000)。
17. 陳男銘,聚苯胺修飾高分子固態電解質氯氣感測器之研究,成功大學化學工程研究所碩士論文,(1997)。18. D. M. Mohilner, R. N. Adams and W. J. Argersinger, Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode, J. Am. Chem. Soc., 84(19) (1962) 3618-3622.
19. A. G. MacDiarmid and A. J. Epstein, Polyanilines: A Novel Class of Conducting Polymers, Faraday Discuss. Chem. Soc., 88 (1989) 317-332.
20. M. Lapkowski and E. M. Genies, Evidence of two kinds of spin in polyaniline from in situ EPR and electrochemistry: Influence of the electrolyte composition, J. Electroanal. Chem., 279 (1990) 157-168.
21. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Polyaniline: Interconversion of Metallic and Insulating Forms, Mol. Liqu. Cryst., 121 (1985) 173-180.
22. J. Bacon and R. N. Adams, Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media, J. Am. Chem. Soc., 90 (1968) 6596-6599.
23. A. F. Diaz and J. A. Logan, Electroactive polyaniline films, J. Electroanal. Chem., 111(1) (1980) 111-114.
24. T. Kobayashi, H. Yoneyama and H. Tamura, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem., 177 (1984) 281-291.
25. L. C. Robert and S. C. Yang, Poly-(2-methylaniline): The effect of chemical modification on the insulator/conductor transitions of polyaniline, Synth. Met., 29 (1)(1989) 337-342.
26. T. Ohsawa, T. Kabata and O. Kimura, Polaronic transition in electrochemical polymerized polyaniline, Synth. Met., 29(1) (1989) 203-210.
27. T. Hübert, L. B. Brett, G. Black and U. Banach, Hydrogen sensors–A review, Sensors And Actuators B: chemical, 157 (2011) 329-352.
28. 林澤沈,製備奈米Pt/C電極及應用於電流式氫氣感測器及其感測特性,東海大學化學工程研究所碩士論文,(2007)。29. M. Dole, F. R. Wilson and W. P. Fife, Hyperbaric Hydrogen Therapy : A Possible Treatment for Cancer, J. Science, 190(4210) (1975) 152-154.
30. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanbe, K. Nishimaki, K. Yamagata, Hydrogen acts as a therapeutic antioxidant by selectively reducting cytotoxic oxygen radical, J. Nat. Med., 13(6) (2007) 688-694.
31. J. Cai, Z. Kang, K. Liu, W. Liu, R. Li and J.H. Zhang, Neuro-protective effects of hydrogen saline in neonatal hypoxia-ischemia rat model, J. Brain Res., 1256 (2009) 129-137.
32. J. Li, C. Wang, J. H. Zhang, J. M. Cai, Y. P. Cao and X. J. Sun, Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress, J. Brain Res., 1328 (2010) 152-161.
33. Q. Sun, J. Cai, J. Zhou, H. Tao, J. H. Zhang and W. Zhang, Hydrogen-rich saline reduces delayed neurologic sequelse in experimental carbon monoxide toxicity, J. Critical Care Med., 39(4) (2011) 765-769.
34. G. Song, H. Tian, J. Liu, H. Zhang, X. J. Sun and S. Qin, H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells, J. Biotechnol Lett., 33(9) (2011) 1715-1722.
35. H. Oharazawa, T. Igarashi, T. Yokota, H. Fujii, H. Suzuki and M. Machide, Protection of the retain by rapid diffusion of hydrogen : administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury, J. Invest Ophthalmol Vis. Sci., 51(1) (2010) 487-492.
36. M. Kubota, S. Shimmura, S. Kubota, H. Miyashita, N. Kato and K. Noda, Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse cormeal alkali-burn model, J. Invest Ophthalmol Vis. Sci., 52(1) (2011) 427-433.
37. W. Miekisch, J. K. Schubert, G. F. E. Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds, Clin. Chimica Acta, 347 (2004) 25-39.
38. M. Fleischer, E. Simon, E. Rumpel, H. Ulmer, M. Herbeck, M. Wandel, C. Fietzek, U. Weimer and H. Meizner, Detection of Volatile Compounds Correlated to Human Disease through Breath Analysis with Chemical Sensor, Sensor and Actuators B, 83 (2002) 245-249.
39. Q. Zhang, P. Wang, J. Li and X. Gao, Diagnosis of Diabetes by Image Detection of Breath Using gas-sensitive Laps, Biosens. Bioelectron, 15 (2000) 249-256.
40. L. R. Narasimhan, W. Goodman and C. K. N. Patel, Correlation of Breath Ammonia with Blood Urea Nitrogen and Cetainties During Hemodialysis, Proc. Natl. Acad. Sci. U.S.A., 98 (2001) 4617-4621.
41. 柯芳圓、吳子聰,呼吸試驗在腸胃疾病診斷的應用,臨床醫學,33卷,(1994),121-126。42. T. Watanabe, T. Nakamura, A. Kaji, A. Terada, N. Yamada, Y. Tando, N. Hasegawa, Y. Qgawa and T. Suda, Usefulness of Expiratory Hydrogen Concentration Measurement for Diagnosing Carbohydrate Malabsorption in Patients with Pancreatic Insuffient, Shoka to Kyushu, 32 (1998) 45-48.
43. M. Simren, P. O. Stotzer, Use and abuse of hydrogen breath tests, Gut, 55 (2006) 297 – 303.
44. 黃炳照,固態電解質電化學氣體感測器,化學專刊,The Chinese Chem. Soc., Taipei, 59(2) (2001) 207-217.45. C. H. Han, D. W. Hong, S. D. Han, J. Gwak and K. C. Singh, Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED, Sensors and Actuators B, 125 (2007) 224–228.
46. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han and K. C. Singh, Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor, Sensors and Actuators B, 128 (2007) 320–325.
47. C. B. Lim, H. Einaga, Y. Sadaoka and Y. Teraoka, Preliminary study on catalytic combustion-type sensor for the detection of diesel particulate matter, Sensors and Actuators B, 160 (2011) 463–470.
48. G. N. Chaudhari, A. M. Bende, A. B. Bodade, S. S. Patil and V. S. Sapkal, Structural and gas sensing properties of nanocrystalline TiO2 :WO3 -based hydrogen sensors, Sensors and Actuators B, 115 (2006) 297–302.
49. V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, International Journal of Hydrogen Energy, 32 (2007) 1145–1158.
50. Y. J. Chen, G. Xiao, T. S. Wang, F. Zhang, Y. Ma, P. Gao, C. L. Zhu, E. Zhang, Z. X. and Q. H. Li, Synthesis and enhanced gas sensing properties of crystalline CeO2 /TiO2 core/shell nanorods, Sensors and Actuators B, 156 (2011) 867–874.
51. J. Lee, D. H. Kim, S. H. Hong and J. Y. Jho, A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method, Sensors and Actuators B, 160 (2011) 1494–1498.
52. B. Lyson-Sypien, A. Czapla, M. Lubecka , P. Gwizdz , K. Schneider, K. Zakrzewska, K. Michalow, T. Graule, A. Reszka, M. Rekas, A. Lacz and M. Radecka, Nanopowders of chromium doped TiO2 for gas sensors, Sensors and Actuators B, 175 (2012) 163–172.
53. S. Somacescu, R. Scurtu, G. Epurescu, R. Pascu, B. Mitu, P. Osiceanu and M. Dinescu, Thin films of SnO2 –CeO2 binary oxides obtained by pulsed laser deposition for sensing application, Applied Surface Science, 278 (2013) 146–152.
54. S. Rahbarpour and S. M. H. Golgoo, Diode type Ag–TiO2 hydrogen sensors, Sensors and Actuators B, 187 (2013) 262–266.
55. B. Wang , Z. Q. Zheng, L. F. Zhu, Y. H. Yang and H. Y. Wu, Self-assembled and Pd decorated Zn2 SnO4 /ZnO wire-sheet shapenano-heterostructures networks hydrogen gas sensors, Sensors and Actuators B, 195 (2014) 549–561.
56. Y. J. Chiang and F. M. Pan, PdO Nanoflake Thin Films for CO Gas Sensing at Low Temperatures, J. Phys. Chem. C, 117 (2013) 15593−15601.
57. N. Maffei and A. K. Kuriakose, A Hydrogen Based on a Hydrogen Ion Conducting Solid Electrolyte, Sensor and actuator B, 56 (1999) 243-246.
58. N. Maffei and A. K. Kuriakose, Solid-State Potentiometric Sensor for Hydrogen Detection in air, Sensor and actuator B, 98 (2004) 73-76.
59. M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 25 (2000) 1463-1502.
60. M. Nogami and T. Maeda, Gas sensor with excellent selectivity to hydrogen gas, Sensors and Actuators B, 142 (2009) 7–10.
61. R. Bouchet, S. Rosini and E. Siebert, Solid-State Sensor Based on acid-doped polybenzimidazole, Sensor and Actuators B, 76 (2001) 610-616.
62. M. Nogami, M. Matsumura and Y. Daiko, Hydrogen sensor prepared using fast proton-conducting glass films, Sensors and Actuators B, 120 (2006) 266–269.
63. Y. Okuyama, N. Kurita, A. Yamada, H. Takami, T. Ohshima, K. Katahira and N. Fukatsu, A new type of hydrogen sensor for molten metals usable up to 1600 K, Electrochimica Acta, 55 (2009) 470–474.
64. T. Ohshima, M. Kondo, M. Tanaka, T. Muroga and A. Sagara, Hydrogen transport in molten salt Flinak measured by solid electrolyte sensors with Pd electrode, Fusion Engineering and Design, 85 (2010) 1841–1846.
65. M. Kondo, T. Muroga, K. Katahira and T. Oshima, Sc-doped CaZrO3 hydrogen sensor for liquid blanket system, Fusion Engineering and Design, 83 (2008) 1277–1281.
66. Y. C. Yang, J. Park, J. Kim, A. Choi and C.O. Park, The study of the voltage drift in high-temperature proton conductor-based hydrogen sensors adopting the solid reference electrode, Sensors and Actuators B, 140 (2009) 273–277.
67. M. Yamaguchi, S. A. Anggraini, Y. Fujio, T. Sato, M. Breedon and N. Miura, Stabilized zirconia-based sensor utilizing SnO2-based sensingelectrode with an integrated Cr2O3 catalyst layer for sensitive and selective detection of hydrogen, international journal of hydrogen energy, 38 (2013) 305-312.
68. G. Fadeyev, A. Kalakin, A. Demin, A. Volkov, A. Brouzgou and P. Tsiakaras, Electrodes for solid electrolyte sensors for themeasurement of CO and H2 content in air, international journal of hydrogen energy, 38 (2013) 13484 -13490.
69. S. A. Anggraini, M. Breedon, N. Miura, Zn–Ta-based oxide as a hydrogen sensitive electrode material for zirconia-based electrochemical gas sensors, Sensors and Actuators B, 187 (2013) 58–64.
70. K. Wallgren and S. Sotiropoulos, Electrochemistry of planar solid-state amperometric devices based on Nafion® and polybenzimidazole solid polymer electrolytes, Electrochimica Acta, 46 (2001) 1523–1532.
71. X. Lu, S. Wu and L. Wang, Solid-State Amperometric Hydrogen Sensor Based on Polymer Electrolyte Membrane Fuel Cell, Sensor and Actuator B,107 (2005) 812-817.
72. M. Sakthivel and W. Weppner, Development of a hydrogen sensor based on solid polymer electrolyte membranes, Sensors and Actuators B, 113 (2006) 998–1004.
73. Y. C. Weng and K. C. Hung, Amperometric hydrogen sensor based on Pt x Pd y /Nafion electrode prepared by Takenata–Torikai method, Sensors and Actuators B, 141 (2009) 161–167.
74. L. Dai, L. Wang, G. Shao and Y. Li, A novel amperometric hydrogen sensor based on nano-structured ZnO sensing electrode and CaZr0.9In0.1O3–δ electrolyte, Sensors and Actuators B, 173 (2012) 85-92.
75. D. D. La, C. K. Kim, T. S. Jun, Y. Jung, G. H. Seong, J. Choo and Y. S. Kim, Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection, Sensors and Actuators B, 155 (2011) 191-198.
76. C. Huck, A. Poghossian, P. Wagner and M. J. Schöning, Combined amperometric/field-effect sensor for the detection of dissolved hydrogen, Sensors and Actuators B , 187 (2013) 168–173.
77. 劉時川,傳統複材產業的新契機-奈米複合材料概況,工業材料雜誌259期,(2008)。
78. 陳夏宗,Nylon6/氟化雲母奈米複合材料射出成型製成條件對成品性質影響之研究,私立中原大學機械工程研究所博士論文,(2004)。
79. 張立德編撰,奈米材料,化學工業出版社,(2000)。
80. 張立德、牟季美編撰,奈米材料和奈米結構,科學出版社,(2001)。
81. 張志焜、崔作林編撰,奈米技術和奈米材料,國防工業出版社,(2000)。
82. 陳禹翔,同步合成複合奈米金-聚苯胺奈米纖維應用於過氧化氫感測,國立國立成功大學化學工程研究所碩士論文,(2008)。83. P. Pfluger and G. B. Street, Chemical, electronic, and structural properties of conducting heterocyclic polymers: A view by XPS, J. Chem. Phys., 80, (1984), 544-553.
84. 黃俊益、吳春桂,有機導電高分子/無機金屬氧化物複合材料的合成與性質探討,(2001)。
85. 蘇品書,超微粒子材料技術,復漢出版社,(1989)。
86. 莊萬發,超微粒子理論應用,復漢出版社,(1995)。
87. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett., 56 (1990) 2379-2380.
88. 工研院工業材料研究所,材料奈米科技專刊,臺北:經濟部技術處, (2001)。
89. 徐國財、張立德,奈米複合材料,化學工業出版社,(2002)。
90. 柯揚船、皮特.斯壯、陳憲偉,聚合物-無機奈米複合材料,五南圖書出版股份有限公司,(2004)。
91. J. L. Leblance, Elastomer–filler interactions and the rheology of filled rubber compounds, J. Appl. Polym. Soc., 78(8) (2000) 1541-1550.
92. R. Jain, D.C. Tiwari and P. Karolia, Highly sensitive and selective polyaniline–zinc oxide nanocomposite sensor for betahistine hydrochloride in solubilized system, Journal of Molecular Liquids, 196 (2014) 308–313.
93. P. G. Su and Y. T. Peng, Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization, Sensors and Actuators B, 193 (2014) 637–643.
94. L. Liang, J. Liu, C. F. Windisch, G. J. Exarhos and Y. Lin, Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires, Angew. Chem. Int. Ed., 41(19) (2002) 3665-3668.
95. Y. Liu, Y. Zeng, R. Liu, H. Wu, G. Wang and D. Cao, Poisoning of acetone to Pt and Au electrodes for electrooxidation of 2-propanol in alkaline medium, Electrochimica Acta, 76 (2012) 174–178.
96. S. K. Mondal, N. Munichandraiah, The effect of low temperature treatment on electrochemical activity of polyaniline, Journal of Electroanalytical Chemistry, 595 (2006) 78-86.
97. B. J. Hwang, Y. C. Liu, Y. L. Chen, Characteristics of Pt/Nafion® electrodes pre-pared by a Takenata–Torikai method in sensing hydrogen, Mater. Chem. Phys. ,69 (2001) 267–273.
98. Y. C. Liu, B. J. Hwang and I. J. Tzeng, Solid-state amperometric hydrogen sensor using Pt/C/Nafion® composite electrodes prepared by a hot-pressed method, J. Electrochem. Soc., 149(11) (2002) H173–H178.
99. M. Sakthivel and W. Weppner, A portable limiting current solid-state electrochem-ical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect, Int. J. Hydrogen Energy, 33 (2008) 905–911.