跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳餘永
研究生(外文):Yu-Yong Chen
論文名稱:製備白金/聚苯胺奈米纖維/Au/Al2O3感測電極應用於電流式氫氣感測器
論文名稱(外文):Preparation of Pt/nano-structured PANi/Au/Al2O3 sensing electrode and application on amperometric hydrogen gas sensor
指導教授:杜景順蔡明瞭
指導教授(外文):Jing-Shan DoMing-Liao Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:256
中文關鍵詞:電流式氣體感測器氫氣奈米白金靈敏度聚苯胺奈米纖維
外文關鍵詞:amperometric gas sensorhydrogennano Pt particlesensitivitynanofibric PANi
相關次數:
  • 被引用被引用:3
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文是利用電化學聚合法,將有序性奈米纖維聚苯胺(Polyaniline, PANi)導電性高分子,製備在以微組裝技術製備所得之Au/Al2O3電極上,再利用電沈積法將Pt製備在聚苯胺奈米纖維上,完成電化學電流式Nafion®/Pt/nano-structured PANi/Au/Al2O3感測器之感測電極製備。
利用SEM分析得知PANi奈米纖維直徑與Pt粒徑大小分別為40-50與5-20 nm。在電化學性質方面,當Pt/nano-structured PANi/Au/Al2O3感測電極之Pt電沉積電量由0.15 C減少至0.009375 C時,電化學活性面積由1.406×10-3 減少至2.90×10-4 m2;粗糙度(電化學活性面積與幾何面積比)由56.24減少至11.60;但Pt之比活性面積則由47.06增加至155.08 m2 g-1,此結果表示在較低之Pt電沉積電量下,藉由奈米結構PANi之分散作用,使Pt奈米粒子得到充分之利用,因而使比活性面積上升。
利用Pt電沉積電量為0.15 C所製備的Nafion®/Pt(0.15 C)/ nano-structured PANi/Au/Al2O3感測電極,當電位大於-0.4 V (vs. Au)時,開始有氫氣氧化電流的發生,表示奈米白金開始進行氫氣的氧化反應;在-0.4 ~ -0.3 V (vs. Au)之間氧化電流隨著電位的提升快速的增加,此區域為電極之反應動力控制區,而電位大於-0.3 V(vs. Au)時,氫氣之反應即達到質傳控制區,其極限電流值為14.528 μA cm-2。
在氫氣感測性質方面,比較Nafion®/Au/Al2O3以及Nafion®/Pt(0.15 C)/nano-structured PANi/Au/Al2O3電極在10,000 ~ 50,000 ppm之氫氣濃度進行感測,結果顯示感測靈敏度由前者電極之1.336 × 10-6 μA ppm-1提升至後者電極的3.654 × 10-4 μA ppm-1,後者為前者之273.5倍。當電沉積電量由0.15 C減少至0.009375 C時,每克白金之比靈敏度由12.21提升至138.80 μA ppm-1g-1。而氣體流量對感測性質影響方面,當流量由200 提升為500 ml min-1 時,Nafion®/Pt(0.009375 C)/nano-structured PANi/Au/Al2O3電極之靈敏度的增加有限,顯示氣體流量大於200 ml min-1時,氣膜擴散阻力可忽略。在Nafion®溶液之使用體積方面,當Nafion®溶液由5 μl減少至3 μl時,因通過Nafion®膜之質傳阻力減少, 使氫氣感測靈敏度大幅提升。感測氣體之相對溼度由100% 減少至23%時,感測靈敏度由4.19 × 10-4 μA ppm-1降低至1.32 × 10-4 μA ppm-1。

In this thesis, the ordered nanofibric polyaniline (PANi) is electropolymerized on Au/Al2O3 electrode prepared by the microfabricated technique. Nafion®/Pt/nano-structured PANi/Au/Al2O3 used as the sensing electrode of the amperometric hydrogen sensor is prepared by electrodepositing Pt on the nano-structured PANi and then casting a suitable amount of Nafion® solution on the surface of electrode.
The diameter of PANi nanofiber and the particle size of electrodeposited Pt analyzed by SEM are found to be 40 – 50 and 5 – 20 nm, respectively. Decreasing the charge for electrodepositing Pt from 0.15 to 0.009375 C the electroactive area and roughness factor of Pt on Pt/nano-structured PANi/Au/Al2O3 electrode decreases from 1.406 × 10-3 m2 and 56.24 to 2.90 × 10-4 m2 and 11.60, respectively. However, decreasing the Pt deposition charge from 0.15 to 0.009375 C the specific Pt electroactive area increases from 47.06 to 155.08 m2 g-1 due to the better distribution of Pt particles onto the nano-structured PANi.
Using Nafion®/Pt(0.15 C)/nano-structured PANi/Au/Al2O3 as sensing electrode, the on-set potential for the anodic oxidation of H2 is found to be -0.4 V (vs. Au). For potential in the range of -0.4 – -0.3 V(vs. Au), the anodic oxidation of H2 is located in kinetic control region and the current increases with potential. The anodic oxidation of H2 is controlled by the mass transfer and the limiting current is obtained to be 14.528 μA cm-2 for the potential greater than -0.3 V (vs. Au).
The sensitivity of amperometric H2 gas sensor based on Nafion®/Pt/nano-structured PANi/Au/Al2O3 found to be 3.654 × 10-4 μA ppm-1 is 273.5 times of that based on Nafion®/Au/Al2O3 with sensitivity of 1.336 × 10-6 μA ppm-1. Using Nafion®/Pt/nano-structured PANi/Au/Al2O3 as sensing electrode, the specific sensitivity of the amperometric H2 gas sensor increases from 12.21 to 138.80 μA ppm-1 g-1 by decreasing the Pt electrodepositing charge from 0.15 to 0.009375 C. The sensitivity of amperometric H2 gas sensor based on Nafion®/Pt (0.009375 C)/nano-structured PANi/Au/Al2O3 changes slightly by increasing the gas flow rate from 200 to 500 ml min-1 due to the insignificant mass transfer resistance witin the gas diffusion layer for gas flow rate greater than 200 ml min-1. On the other hand, decreasing the amount of Nafion® solution from 5 to 3 μl for preparing sensing electrode the significant increase in the sensitivity of amperometric H2 gas sensor is due to the decrease in the mass transfer resistance within the Nafion® film. The sensitivity of amperometric H2 gas sensor decreases from 4.19 × 10-4 to 1.32 × 10-4 μA ppm-1 with decreasing the relative humidity from 100 to 23 %.

摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 XII
圖目錄 XIIII
第一章 緒論 1
1-1感測器之簡介 1
1-2導電性高分子 5
1-2-1導電性高分子之簡介 5
1-2-2導電性高分子之導電理論機制 9
1-2-3 聚苯胺 17
1-2-3-1 聚苯胺之結構 17
1-2-3-2聚苯胺之聚合機制 20
1-2-3-3 聚苯胺之電化學行為 22
1-3 氫氣之簡介 25
1-3-1 氫氣在工業上所扮演的角色 25
1-3-2 氫氣在醫學上所扮演的角色 26
1-3-2-1氫氣應用於疾病之治療 26
1-3-2-2氫氣應用於疾病之預防 28
1-4 氫氣感測器之發展與其現況 31
1-5 貴金屬/導電性高分子奈米複合材料 47
1-5-1貴金屬奈米粒子之特性 47
1-5-2貴金屬/導電性高分子奈米複合材料之特性與應用 49
1-6研究動機與實驗架構 53
第二章 實驗程序與設備 55
2-1 實驗儀器 55
2-2 實驗藥品 57
2-3實驗程序 59
2-3-1感測電極之製備 59
2-3-1-1. Au/Al2O3電極之製備 59
2-3-1-2. Nano-structured PANi/Au/Al2O3電極之製備 63
2-3-1-3. Pt/nano-structured PANi/Au/Al2O3電極之製備 65
2-4感測電極材料性質分析 67
2-4-1電極表面型態分析 67
2-4-2 電極之電化學性質分析 67
2-4-2-1 循環伏安分析 68
2-4-3-2極化曲線分析 74
2-5電流式氫氣感測器之感測性質 79
2-5-1靈敏度 79
2-5-2感測極限 81
2-5-3穩定性 82
2-5-4選擇性 83
第三章 結果與討論 84
3-1 感測電極之性質分析 84
3-1-1 感測電極之表面型態 84
3-1-2 Pt/nano-structure PANi/Au/Al2O3電極之Pt電沉積量電與負載量之關係 110
3-1-3 感測電極之電化學性質分析 114
3-2 氫氣在感測電極上之感測性質 129
3-2-1 氫氣在感測電極上之電化學反應性質 129
3-3 氫氣之感測性質 145
3-3-1 Nafion®/Au/Al2O3電極之感測性質 145
3-3-2 Nafion®/Pt/nano-structured PANi/Au/Al2O3電極 149
3-3-3 製備Nafion®/Pt/nano-structured PANi/Au/Al2O3電極時Pt電沉積電量對感測性質之影響 153
3-3-4 氣體流量對Nafion®/Pt/nano-structured PANi/Au/Al2O3電極之感測性質的影響 163
3-3-5 製備Nafion®/Pt/nano-structured PANi/Au/Al2O3電極時Nafion®溶液體積對感測性質之影響 182
3-3-6 製備Nafion®/Pt/nano-structured PANi/Au/Al2O3電極時PANi電聚合電量對感測性質之影響 199
3-3-7 相對溼度對於Nafion®/Pt/nano-structured PANi/Au/Al2O3電極之感測性質的影響 215
3-3-8 Nafion®/Pt/nano-strctured PANi/Au/Al2O3電極之氫氣感測選擇性 224
3-3-9 Nafion®/Pt/nano-strctured PANi/Au/Al2O3電極之穩定性測試 229
第四章 綜合討論 234
4-1 氫氣在Nafion®/Pt/nano-structured PANi/Au/Al2O3感測電極上之質傳及其影響因素探討 234
4-2 Nafion®/Pt/nano-structured PANi/Au/Al2O3電極之感測性質比較 238
第五章 結論與建議 242
參考文獻 246

1. 吳朗,感測與轉換:原理、元件與應用,全欣資訊,(1992)。
2. 周瑞福,氣體感測器原理與應用,三聯科技股份有限公司,專題報導,(1990),25-37。
3. 吳峰日,感測器與轉換器,文笙出版社,(1990)。
4. 黃炳照、莊睦賢,電化學感測器,化工技術,7(2),(1999),151-161.。
5. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Review. Lett., 39 (1977) 1098-1101.

6. H. Shirakawa, The Discovery of polyacetylene film: The Dawing of An Era of Conducting polymer(Nobel Lecture), Angewandte Chemie Iternational ed., 40(14) (2001) 2574-2580.

7. H. Shirakawa and S. Ikeda, Infrared Spectra of Poly(acetylene), Polym. J., 2 (1971) 231-244.

8. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers : Halogen Derivatives of Polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun., 16 (1977) 578-580.

9. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer and L. W. Shacklette, Structural Basis for Semiconducting and Metallic Polymer Dopant Systems, Chem. Rev., 82 (1982) 209-222.

10. A. F. Diaz, K. K. Kanazdwd, Polypyrrole : An Electrochemical Approach to Conducting Polymers, Extended linear chain compunds, J. S. Miller, ed. Plenum, New York (1982) 417-441.

11. K. Kaneto, S. Ura, K. Yoshino and Y. Inuishi, Optical and Electrical Properties of Electrochemically Doped n- and p-type Polythiophenes, Jap. J. Appl. Phys., 23 (1984) 189-191.

12. N. L. D. Somasiri and A. G. Maciarmid, Polyaniline: Characterization as a Cathode Active Material in Rechargeable Batteries in Aqueous Electrolytes, J. Appl. Electrochem., 18 (1988) 92-95.

13. C. Kittel, Introduction to Solid State Physics, 6th ed., John Wiley &; Sons, Singapore (1986).

14. A. S. Wood, Tapping the Power of Intrinsic Conductivity, Modern Plastic Int., 8(1991) 33.

15. M. G. Kanatzidls, C. G. Wu, H. O. Marcy, D. C. DeGroot, and C. R. Kannewurf, Conductive Polymer/Oxide Bronze Nanocomposites. Intercalated Polythiophene in V205 Xerogels. Chem. Mater., 2 (1990) 222-224.

16. 徐若韶,電致發光電池中電解質的結構及物性探討,中央大學化學研究碩碩士論文,(2000)。
17. 陳男銘,聚苯胺修飾高分子固態電解質氯氣感測器之研究,成功大學化學工程研究所碩士論文,(1997)。

18. D. M. Mohilner, R. N. Adams and W. J. Argersinger, Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode, J. Am. Chem. Soc., 84(19) (1962) 3618-3622.

19. A. G. MacDiarmid and A. J. Epstein, Polyanilines: A Novel Class of Conducting Polymers, Faraday Discuss. Chem. Soc., 88 (1989) 317-332.
20. M. Lapkowski and E. M. Genies, Evidence of two kinds of spin in polyaniline from in situ EPR and electrochemistry: Influence of the electrolyte composition, J. Electroanal. Chem., 279 (1990) 157-168.

21. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Polyaniline: Interconversion of Metallic and Insulating Forms, Mol. Liqu. Cryst., 121 (1985) 173-180.

22. J. Bacon and R. N. Adams, Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media, J. Am. Chem. Soc., 90 (1968) 6596-6599.

23. A. F. Diaz and J. A. Logan, Electroactive polyaniline films, J. Electroanal. Chem., 111(1) (1980) 111-114.

24. T. Kobayashi, H. Yoneyama and H. Tamura, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem., 177 (1984) 281-291.

25. L. C. Robert and S. C. Yang, Poly-(2-methylaniline): The effect of chemical modification on the insulator/conductor transitions of polyaniline, Synth. Met., 29 (1)(1989) 337-342.

26. T. Ohsawa, T. Kabata and O. Kimura, Polaronic transition in electrochemical polymerized polyaniline, Synth. Met., 29(1) (1989) 203-210.

27. T. Hübert, L. B. Brett, G. Black and U. Banach, Hydrogen sensors–A review, Sensors And Actuators B: chemical, 157 (2011) 329-352.

28. 林澤沈,製備奈米Pt/C電極及應用於電流式氫氣感測器及其感測特性,東海大學化學工程研究所碩士論文,(2007)。

29. M. Dole, F. R. Wilson and W. P. Fife, Hyperbaric Hydrogen Therapy : A Possible Treatment for Cancer, J. Science, 190(4210) (1975) 152-154.

30. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanbe, K. Nishimaki, K. Yamagata, Hydrogen acts as a therapeutic antioxidant by selectively reducting cytotoxic oxygen radical, J. Nat. Med., 13(6) (2007) 688-694.

31. J. Cai, Z. Kang, K. Liu, W. Liu, R. Li and J.H. Zhang, Neuro-protective effects of hydrogen saline in neonatal hypoxia-ischemia rat model, J. Brain Res., 1256 (2009) 129-137.

32. J. Li, C. Wang, J. H. Zhang, J. M. Cai, Y. P. Cao and X. J. Sun, Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress, J. Brain Res., 1328 (2010) 152-161.

33. Q. Sun, J. Cai, J. Zhou, H. Tao, J. H. Zhang and W. Zhang, Hydrogen-rich saline reduces delayed neurologic sequelse in experimental carbon monoxide toxicity, J. Critical Care Med., 39(4) (2011) 765-769.

34. G. Song, H. Tian, J. Liu, H. Zhang, X. J. Sun and S. Qin, H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells, J. Biotechnol Lett., 33(9) (2011) 1715-1722.

35. H. Oharazawa, T. Igarashi, T. Yokota, H. Fujii, H. Suzuki and M. Machide, Protection of the retain by rapid diffusion of hydrogen : administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury, J. Invest Ophthalmol Vis. Sci., 51(1) (2010) 487-492.

36. M. Kubota, S. Shimmura, S. Kubota, H. Miyashita, N. Kato and K. Noda, Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse cormeal alkali-burn model, J. Invest Ophthalmol Vis. Sci., 52(1) (2011) 427-433.
37. W. Miekisch, J. K. Schubert, G. F. E. Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds, Clin. Chimica Acta, 347 (2004) 25-39.

38. M. Fleischer, E. Simon, E. Rumpel, H. Ulmer, M. Herbeck, M. Wandel, C. Fietzek, U. Weimer and H. Meizner, Detection of Volatile Compounds Correlated to Human Disease through Breath Analysis with Chemical Sensor, Sensor and Actuators B, 83 (2002) 245-249.

39. Q. Zhang, P. Wang, J. Li and X. Gao, Diagnosis of Diabetes by Image Detection of Breath Using gas-sensitive Laps, Biosens. Bioelectron, 15 (2000) 249-256.

40. L. R. Narasimhan, W. Goodman and C. K. N. Patel, Correlation of Breath Ammonia with Blood Urea Nitrogen and Cetainties During Hemodialysis, Proc. Natl. Acad. Sci. U.S.A., 98 (2001) 4617-4621.

41. 柯芳圓、吳子聰,呼吸試驗在腸胃疾病診斷的應用,臨床醫學,33卷,(1994),121-126。

42. T. Watanabe, T. Nakamura, A. Kaji, A. Terada, N. Yamada, Y. Tando, N. Hasegawa, Y. Qgawa and T. Suda, Usefulness of Expiratory Hydrogen Concentration Measurement for Diagnosing Carbohydrate Malabsorption in Patients with Pancreatic Insuffient, Shoka to Kyushu, 32 (1998) 45-48.

43. M. Simren, P. O. Stotzer, Use and abuse of hydrogen breath tests, Gut, 55 (2006) 297 – 303.

44. 黃炳照,固態電解質電化學氣體感測器,化學專刊,The Chinese Chem. Soc., Taipei, 59(2) (2001) 207-217.

45. C. H. Han, D. W. Hong, S. D. Han, J. Gwak and K. C. Singh, Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED, Sensors and Actuators B, 125 (2007) 224–228.
46. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han and K. C. Singh, Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor, Sensors and Actuators B, 128 (2007) 320–325.

47. C. B. Lim, H. Einaga, Y. Sadaoka and Y. Teraoka, Preliminary study on catalytic combustion-type sensor for the detection of diesel particulate matter, Sensors and Actuators B, 160 (2011) 463–470.

48. G. N. Chaudhari, A. M. Bende, A. B. Bodade, S. S. Patil and V. S. Sapkal, Structural and gas sensing properties of nanocrystalline TiO2 :WO3 -based hydrogen sensors, Sensors and Actuators B, 115 (2006) 297–302.

49. V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, International Journal of Hydrogen Energy, 32 (2007) 1145–1158.

50. Y. J. Chen, G. Xiao, T. S. Wang, F. Zhang, Y. Ma, P. Gao, C. L. Zhu, E. Zhang, Z. X. and Q. H. Li, Synthesis and enhanced gas sensing properties of crystalline CeO2 /TiO2 core/shell nanorods, Sensors and Actuators B, 156 (2011) 867–874.

51. J. Lee, D. H. Kim, S. H. Hong and J. Y. Jho, A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method, Sensors and Actuators B, 160 (2011) 1494–1498.

52. B. Lyson-Sypien, A. Czapla, M. Lubecka , P. Gwizdz , K. Schneider, K. Zakrzewska, K. Michalow, T. Graule, A. Reszka, M. Rekas, A. Lacz and M. Radecka, Nanopowders of chromium doped TiO2 for gas sensors, Sensors and Actuators B, 175 (2012) 163–172.

53. S. Somacescu, R. Scurtu, G. Epurescu, R. Pascu, B. Mitu, P. Osiceanu and M. Dinescu, Thin films of SnO2 –CeO2 binary oxides obtained by pulsed laser deposition for sensing application, Applied Surface Science, 278 (2013) 146–152.

54. S. Rahbarpour and S. M. H. Golgoo, Diode type Ag–TiO2 hydrogen sensors, Sensors and Actuators B, 187 (2013) 262–266.

55. B. Wang , Z. Q. Zheng, L. F. Zhu, Y. H. Yang and H. Y. Wu, Self-assembled and Pd decorated Zn2 SnO4 /ZnO wire-sheet shapenano-heterostructures networks hydrogen gas sensors, Sensors and Actuators B, 195 (2014) 549–561.

56. Y. J. Chiang and F. M. Pan, PdO Nanoflake Thin Films for CO Gas Sensing at Low Temperatures, J. Phys. Chem. C, 117 (2013) 15593−15601.

57. N. Maffei and A. K. Kuriakose, A Hydrogen Based on a Hydrogen Ion Conducting Solid Electrolyte, Sensor and actuator B, 56 (1999) 243-246.

58. N. Maffei and A. K. Kuriakose, Solid-State Potentiometric Sensor for Hydrogen Detection in air, Sensor and actuator B, 98 (2004) 73-76.

59. M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 25 (2000) 1463-1502.

60. M. Nogami and T. Maeda, Gas sensor with excellent selectivity to hydrogen gas, Sensors and Actuators B, 142 (2009) 7–10.

61. R. Bouchet, S. Rosini and E. Siebert, Solid-State Sensor Based on acid-doped polybenzimidazole, Sensor and Actuators B, 76 (2001) 610-616.

62. M. Nogami, M. Matsumura and Y. Daiko, Hydrogen sensor prepared using fast proton-conducting glass films, Sensors and Actuators B, 120 (2006) 266–269.

63. Y. Okuyama, N. Kurita, A. Yamada, H. Takami, T. Ohshima, K. Katahira and N. Fukatsu, A new type of hydrogen sensor for molten metals usable up to 1600 K, Electrochimica Acta, 55 (2009) 470–474.

64. T. Ohshima, M. Kondo, M. Tanaka, T. Muroga and A. Sagara, Hydrogen transport in molten salt Flinak measured by solid electrolyte sensors with Pd electrode, Fusion Engineering and Design, 85 (2010) 1841–1846.

65. M. Kondo, T. Muroga, K. Katahira and T. Oshima, Sc-doped CaZrO3 hydrogen sensor for liquid blanket system, Fusion Engineering and Design, 83 (2008) 1277–1281.

66. Y. C. Yang, J. Park, J. Kim, A. Choi and C.O. Park, The study of the voltage drift in high-temperature proton conductor-based hydrogen sensors adopting the solid reference electrode, Sensors and Actuators B, 140 (2009) 273–277.

67. M. Yamaguchi, S. A. Anggraini, Y. Fujio, T. Sato, M. Breedon and N. Miura, Stabilized zirconia-based sensor utilizing SnO2-based sensingelectrode with an integrated Cr2O3 catalyst layer for sensitive and selective detection of hydrogen, international journal of hydrogen energy, 38 (2013) 305-312.

68. G. Fadeyev, A. Kalakin, A. Demin, A. Volkov, A. Brouzgou and P. Tsiakaras, Electrodes for solid electrolyte sensors for themeasurement of CO and H2 content in air, international journal of hydrogen energy, 38 (2013) 13484 -13490.

69. S. A. Anggraini, M. Breedon, N. Miura, Zn–Ta-based oxide as a hydrogen sensitive electrode material for zirconia-based electrochemical gas sensors, Sensors and Actuators B, 187 (2013) 58–64.

70. K. Wallgren and S. Sotiropoulos, Electrochemistry of planar solid-state amperometric devices based on Nafion® and polybenzimidazole solid polymer electrolytes, Electrochimica Acta, 46 (2001) 1523–1532.

71. X. Lu, S. Wu and L. Wang, Solid-State Amperometric Hydrogen Sensor Based on Polymer Electrolyte Membrane Fuel Cell, Sensor and Actuator B,107 (2005) 812-817.

72. M. Sakthivel and W. Weppner, Development of a hydrogen sensor based on solid polymer electrolyte membranes, Sensors and Actuators B, 113 (2006) 998–1004.

73. Y. C. Weng and K. C. Hung, Amperometric hydrogen sensor based on Pt x Pd y /Nafion electrode prepared by Takenata–Torikai method, Sensors and Actuators B, 141 (2009) 161–167.

74. L. Dai, L. Wang, G. Shao and Y. Li, A novel amperometric hydrogen sensor based on nano-structured ZnO sensing electrode and CaZr0.9In0.1O3–δ electrolyte, Sensors and Actuators B, 173 (2012) 85-92.

75. D. D. La, C. K. Kim, T. S. Jun, Y. Jung, G. H. Seong, J. Choo and Y. S. Kim, Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection, Sensors and Actuators B, 155 (2011) 191-198.

76. C. Huck, A. Poghossian, P. Wagner and M. J. Schöning, Combined amperometric/field-effect sensor for the detection of dissolved hydrogen, Sensors and Actuators B , 187 (2013) 168–173.

77. 劉時川,傳統複材產業的新契機-奈米複合材料概況,工業材料雜誌259期,(2008)。
78. 陳夏宗,Nylon6/氟化雲母奈米複合材料射出成型製成條件對成品性質影響之研究,私立中原大學機械工程研究所博士論文,(2004)。
79. 張立德編撰,奈米材料,化學工業出版社,(2000)。
80. 張立德、牟季美編撰,奈米材料和奈米結構,科學出版社,(2001)。
81. 張志焜、崔作林編撰,奈米技術和奈米材料,國防工業出版社,(2000)。
82. 陳禹翔,同步合成複合奈米金-聚苯胺奈米纖維應用於過氧化氫感測,國立國立成功大學化學工程研究所碩士論文,(2008)。

83. P. Pfluger and G. B. Street, Chemical, electronic, and structural properties of conducting heterocyclic polymers: A view by XPS, J. Chem. Phys., 80, (1984), 544-553.

84. 黃俊益、吳春桂,有機導電高分子/無機金屬氧化物複合材料的合成與性質探討,(2001)。
85. 蘇品書,超微粒子材料技術,復漢出版社,(1989)。
86. 莊萬發,超微粒子理論應用,復漢出版社,(1995)。

87. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett., 56 (1990) 2379-2380.

88. 工研院工業材料研究所,材料奈米科技專刊,臺北:經濟部技術處, (2001)。
89. 徐國財、張立德,奈米複合材料,化學工業出版社,(2002)。
90. 柯揚船、皮特.斯壯、陳憲偉,聚合物-無機奈米複合材料,五南圖書出版股份有限公司,(2004)。

91. J. L. Leblance, Elastomer–filler interactions and the rheology of filled rubber compounds, J. Appl. Polym. Soc., 78(8) (2000) 1541-1550.

92. R. Jain, D.C. Tiwari and P. Karolia, Highly sensitive and selective polyaniline–zinc oxide nanocomposite sensor for betahistine hydrochloride in solubilized system, Journal of Molecular Liquids, 196 (2014) 308–313.

93. P. G. Su and Y. T. Peng, Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization, Sensors and Actuators B, 193 (2014) 637–643.

94. L. Liang, J. Liu, C. F. Windisch, G. J. Exarhos and Y. Lin, Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires, Angew. Chem. Int. Ed., 41(19) (2002) 3665-3668.

95. Y. Liu, Y. Zeng, R. Liu, H. Wu, G. Wang and D. Cao, Poisoning of acetone to Pt and Au electrodes for electrooxidation of 2-propanol in alkaline medium, Electrochimica Acta, 76 (2012) 174–178.

96. S. K. Mondal, N. Munichandraiah, The effect of low temperature treatment on electrochemical activity of polyaniline, Journal of Electroanalytical Chemistry, 595 (2006) 78-86.

97. B. J. Hwang, Y. C. Liu, Y. L. Chen, Characteristics of Pt/Nafion® electrodes pre-pared by a Takenata–Torikai method in sensing hydrogen, Mater. Chem. Phys. ,69 (2001) 267–273.

98. Y. C. Liu, B. J. Hwang and I. J. Tzeng, Solid-state amperometric hydrogen sensor using Pt/C/Nafion® composite electrodes prepared by a hot-pressed method, J. Electrochem. Soc., 149(11) (2002) H173–H178.

99. M. Sakthivel and W. Weppner, A portable limiting current solid-state electrochem-ical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect, Int. J. Hydrogen Energy, 33 (2008) 905–911.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top