# 臺灣博碩士論文加值系統

(44.211.117.197) 您好！臺灣時間：2024/05/21 03:45

:::

### 詳目顯示

:

• 被引用:4
• 點閱:138
• 評分:
• 下載:15
• 書目收藏:0
 本文分別以基於狀態變數與Hermite型近似之移動最小二乘法分析古典板問題。針對狀態變數之數值方法，將古典板之四階偏微分控制方程分解成以狀態變數表示的八個偶合在一起之一階偏微分方程，並建立各變量之近似函數，且各近似函數間相互獨立。而對於Hermite型近似方法，除了將變位與其一階導數之殘値納入加權殘値二次式計算之外，同時將高階導數如彎矩、剪力之殘値一併考慮，所建立的各變量近似函數彼此相依。兩種數值方法在節點上皆具有八個自由度，建立各主變數之近似函數，並透過移動最小二乘法一次求解出所有變量。針對在不同形狀、不同邊界條件且不同載重作用下之算例，其數值結果顯示本文所採用之兩種數值方法對各變量皆可達到良好之精度與收斂性。
 The moving least square methods (MLS) based on state variables and Hermite type approximation are proposed to analyze classical plate problems. For the method based on state variables, the fourth order governing partial differential equation for a plate is decomposed into eight coupled partial differential equations of first order. The approximate functions of state variables are constructed. For the method based on the Hermite type, the residuals of the approximation at each node is considered not only the primary variable and its first-order derivatives, but also the higher order variables, such as the bending moment and shear force. Both of the present methods possess eight degrees of freedom at each node. We construct the approximate functions of all the state variables, and the moving least square technique is employed to solve all of the variables once. Several numerical examples of a plate under different loads with different geometric shapes and various boundary conditions are calculated. It is shown that the present methods have excellent accuracy and high convergence rate.
 摘要 IAbstract II致謝 IX目錄 XI表目錄 XIII圖目錄 XV第一章 緒論 11.1 前言 11.2 文獻回顧 21.3 本文架構 5第二章 古典板控制方程式推導 62.1 古典板控制方程式 62.2 數值算例解析解 92.2.1 外圈簡支圓形板受均佈載重 92.2.2 外圈固定圓形板受線性載重 102.2.3 外圈固定橢圓形板受均佈載重 112.2.4 四邊簡支承矩形板受雙正弦載重 122.2.5 四邊簡支承矩形板受均佈載重 132.2.6 四邊簡支承矩形板受線性載重 152.2.7 兩邊簡支兩邊固定矩形板受正弦載重 162.2.8 外圈簡支內圈自由端環形板受均佈載重 17第三章 移動最小二乘法理論 193.1 移動最小二乘法 193.2 基於狀態變數之移動最小二乘法在古典板之應用 233.3 考慮高階導數之Hermite型近似在古典板之應用 283.4 鄰近點與權函數之選取 33第四章 古典板數值算例 344.1 外圈簡支圓形板承受均佈載重 354.2外圈固定圓形板承受線性載重 364.3 外圈固定橢圓形板受均佈載重 374.4 四邊簡支矩形板受雙正弦載重 374.5 四邊簡支矩形板受均佈載重 384.6 四邊簡支矩形板受線性載重 394.7 兩邊簡支兩邊固定矩形板受正弦載重 404.8 外圈簡支內圈自由端環形板受均佈載重 41第五章 結論 42參考文獻 44表 48圖 64
 1.Lucy, L.B., A numerical approach to the testing of the fission hypothesis. The astronomical journal, 1977. 82: p. 1013-1024.2.Monaghan, J.J., An introduction to SPH. Computer physics communications, 1988. 48(1): p. 89-96.3.Swegle, J., D. Hicks, and S. Attaway, Smoothed particle hydrodynamics stability analysis. Journal of computational physics, 1995. 116(1): p. 123-134.4.Dyka, C. and R. Ingel, Addressing Tension Instability in SPH Methods. 1994, DTIC Document.5.Nayroles, B., G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics, 1992. 10(5): p. 307-318.6.Belytschko, T., Y.Y. Lu, and L. Gu, Element‐free Galerkin methods. International journal for numerical methods in engineering, 1994. 37(2): p. 229-256.7.Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International journal for numerical methods in fluids, 1995. 20(8‐9): p. 1081-1106.8.Liu, W.K., S. Jun, S. Li, J. Adee and T. Belytschko, Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 1995. 38(10): p. 1655-1679.9.Chen, J.-S., C. Pan, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 1996. 139(1): p. 195-227.10.Onate, E., S. Idelsohn, OC. Zienkiewicz and RL. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow. International journal for numerical methods in engineering, 1996. 39(22): p. 3839-3866.11.Duarte, C.A. and J.T. Oden, Hp clouds-an hp meshless method. Numerical methods for partial differential equations, 1996. 12(6): p. 673-706.12.Liszka, T., C. Duarte, and W. Tworzydlo, Meshless cloud method. Computer Methods in Applied Mechanics and Engineering, 1996. 139(1): p. 263-288.13.Belytschko, T., Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 1996. 139(1): p. 3-47.14.Zhu, T., J. Zhang, and S. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics, 1998. 22(2): p. 174-186.15.Zhu, T., J.-D. Zhang, and S. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics, 1998. 21(3): p. 223-235.16.Atluri, S. and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics, 1998. 22(2): p. 117-127.17.Aluru, N., A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering, 2000. 47(6): p. 1083-1121.18.Zhang, X., X.-H. Liu, K.-Z. Song and M.-W. Lu, Least‐squares collocation meshless method. International Journal for Numerical Methods in Engineering, 2001. 51(9): p. 1089-1100.19.Liew, K., T. Ng, and Y. Wu, Meshfree method for large deformation analysis–a reproducing kernel particle approach. Engineering Structures, 2002. 24(5): p. 543-551.20.Sladek, J., V. Sladek, and H.A. Mang, Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation. Computer methods in applied mechanics and engineering, 2002. 191(51): p. 5943-5959.21.Liu, G.-R. and Y. Gu, A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001. 50(4): p. 937-951.22.Wang, J. and G. Liu, A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002. 54(11): p. 1623-1648.23.Li, H., TY. Ng, JQ. Cheng and KY. Lam, Hermite–Cloud: a novel true meshless method. Computational Mechanics, 2003. 33(1): p. 30-41.24.Belinha, J. and L. Dinis, Analysis of plates and laminates using the element-free Galerkin method. Computers ＆ structures, 2006. 84(22): p. 1547-1559.25.Liu, Y., Y. Hon, and K. Liew, A meshfree Hermite‐type radial point interpolation method for Kirchhoff plate problems. International journal for numerical methods in engineering, 2006. 66(7): p. 1153-1178.26.Wang, Y.-M., S.-M. Chen, and C.-P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. Computational Mechanics, 2010. 45(6): p. 585-606.27.Yang, S.-W., Y.-M. Wang, C.-P. Wu and H.-T. Hu, A meshless collocation method based on the differential reproducing kernel approximation. Computer Modeling in Engineering and Sciences (CMES), 2010. 60(1): p. 1.28.Chen, S.-M., C.-P. Wu, and Y.-M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates. Computational Mechanics, 2011. 47(4): p. 425-453.29.張祐綱, Hermite type 之移動最小二乘法在板, 梁分析上之應用. 成功大學土木工程學系學位論文, 2009: p. 1-109.30.林均威, 受束制之移動最小二乘法在古典板上之應用. 成功大學土木工程學系學位論文, 2013.31.Timoshenko, S., S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory of plates and shells. Vol. 2. 1959: McGraw-hill New York.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用移動最小二乘法於圓錐體薄殼大變形分析 2 應用弧長法與移動最小二乘法於圓錐體薄殼大變形分析 3 應用弧長法與移動最小二乘法於旋轉體薄殼大變形分析 4 應用移動最小二乘法於圓柱體薄殼大變形分析 5 Hermitetype之移動最小二乘法在板、梁分析上之應用 6 齊次基底移動最小二乘法在平板分析上之應用 7 受束制之移動最小二乘法在古典板上之應用 8 基於狀態變數與Hermite型置點法之移動最小二乘法在二維彈性力學之應用 9 受束制之移動最小二乘法在Mindlin平板分析之應用 10 移動最小二乘法在平板挫屈分析上之應用 11 齊次基底移動最小二乘法在複合桿件扭轉上之應用 12 齊次基底移動最小二乘法在二維彈性力學上之應用 13 移動最小功法在二維彈性力學問題分析之應用 14 基於狀態變數與Hermite型置點法之移動最小二乘法求解波松問題 15 以受束制之移動最小二乘法求解柏松方程式

 無相關期刊

 1 建築輸送設備碳足跡評估之研究 2 半導體廠房廢水處理與回收成本架構與分析 3 單層主體結構於有機磷光發光二極體元件 4 利用化學氣相沉積法製備具高熱傳導及高電阻之三層UNCD-MCD-UNCD鑽石薄膜結構 5 具熱整合銅-氯熱化學循環系統的經濟分析之研究 6 環氧樹脂/聚醚二胺混摻氧化矽球或聚離子液體複合膜之合成與其於鋰離子電池之應用 7 成長高品質低密度之n型氮化鎵微米柱用於光電元件 8 以非離子型界面活性劑及超臨界二氧化碳萃取檸檬皮精油之研究 9 以嗜熱菌產生之耐高溫蛋白為生物吸附劑進行水相中有價值金屬之回收 10 微振動量測之精確度研究 11 利用UV光改善鈦金屬生物活性之研究 12 受束制之移動最小二乘法在古典板上之應用 13 聚(3-己基噻吩)薄膜電晶體之穩定性研究及其應用 14 氮化鎵極性於光電解水產氫之研究 15 多孔型陽極氧化鋁製作與濕度感測器應用之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室