1.Aboudi, J., Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials, Journal of Applied Mechanics, vol 68, 697-707, 2001.
2.Aboudi, J., Mechanics of Composite Materials, A Uniform Micromechanical Approach. Elsevier Science Publishers, Amsterdam, 1991.
3.Aboudi, J., Micromechanical analysis of composites by the method of cells. Appl. Mech. Rev., Vol. 42, No. 7, 193-221, 1989.
4.Addessi, D., Bellis, M. L. D. and Sacco, E., Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mechanics Research Communications, 54, 27-34, 2013.
5.Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Sturctures, Vol. 32, No. 2, pp. 137-163, 1995.
6.Bazant, Z. P. and Christensen, M., Analogy between micropolar continuum and grid frameworks under initial stress. Int. J. Solids Structures, Vol. 8, pp. 327-346, 1972.
7.Bigoni, D. and Drugan, W. J., Analytical Derivation of Cosserat Moduli via Homogenization of Heterogeneous Elastic Materials. Journal of Applied Mechanics, Vol. 74, 741-753, 2007.
8.Brockenbrough, J. R., Suresh, S. and Wienecke, H. A., Deformation of metal-matrix composites with continuous fibers: Geometrical effects of fiber distribution and shape. Acta Metall. Mater., 5, 735-52, 1991.
9.Buryachenko, V.A., Micromechanics of Heterogeneous Materials. 2007.
10.Caruso, J. J., Application of finite element substructuring to composite micromechanics. NASA TM-83729, NASA Lewis Research Center, Cleveland, OH, 1984.
11.Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements, International Journal of Solids and Structures, 43, 475-496, 2006.
12.Chang, C. S. and Liao, C. L., Constitutive Relation for a Particulate Medium with the Effect of Particle Rotation. Int. J. Solids Structures Vol. 26, No. 4, pp. 437-435, 1990.
13.Cherkaev, A., Variational Methods for Structural Optimization. Springer. 2000.
14.Christensen, R.M. Mechanics of Composite Materials. Wiley 1979.
15.Eringen, A. C., Microcontinuum Field Theories I: Foundations and Solids. Springer, New York, 1999.
16.Forest, S. and Sab, K., Cosserat overall modelling of heterogeneous materials. Mechanics Research Communications, Vol. 25, No. 4, pp. 449-454, 1998.
17.Forest, S., Dendievel, R. and Canova, G. R., Estimating the Overall Properties of Heterogeneous Cosserat materials. Modelling Simul. Mater. Sci. Eng., 7, 829-840, 1999.
18.Forest, S., Pradel, F. and Sab, K., Asymptotic analysis of heterogeneous Cosserat media. International Journal of Solids and Structures, 38, 4585-4608, 2001.
19.Gluge, R., Generalized boundary conditions on representative volume elements and their use in determining the effective materials properties. Computational Materials Science, 79, 408-416, 2013.
20.Hashin, Z., Analysis of composite materials – A survey, J. Appl. Mech., Vol. 50, 481-505, 1983.
21.Hashin, Z., Theory of mechanical behaviour of heterogeneous media, Appl. Mech. Rev., Vol. 17, 1-9, 1964.
22.Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, Vol. 11, 357-372, 1963.
23.Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, Int. J. Engng. Sci., 17, 573-586, 1979.
24.Ilcewicz, L. B., Narasimhan, M. N. L. and Wilson, J. B., Micro and Macro Materials Symmetries in Generalized Continua. Int. J. Engng. Sci. Voi., 1, pp. 97-109, 1986.
25.Joumma, H. and Ostoja-Starzewski, M., Stress and Couple-stress invariance in non-centrosymmetric micropolar planar elasticity. Proceedings of the Royal Society A: Mathemmatical, Physical and Engineering Sciences, 467, 2896-2911, 2011.
26.Li, X. and Liu, Q., A version of Hill’s lemma for Cosserat continuum. Acta Mechanica Sinica, 25, 499-506, 2009.
27.Li, X., Liu, Q. and Zhang, J., A micro-macro homogenization approach for discrete particle assembly Cosserat continuum modeling of granular materials. International Journal of Solids and Structures, 47, 291-303, 2010.
28.Liu, Q., Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mechanica Sinica, 224, 851-866, 2013.
29.Liu, Q., Liu X., Li, X. and Li, S., Micro-macro homogenization of granular materials based on the average-field theory of Cosserat continuum. Advanced Power Technology, 25, 436-449, 2014.
30.Liu, X. N., Huang, G. L. and Hu, G. K., Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, J. Mech. Phys. Solids 60, 1907-1921, 2012.
31.Michel, J. C., Moulinec, H. and Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Engrg., 172, 109-143, 1998.
32.Milton, G.W., The Theory of Composites. Cambridge University Press, 2002.
33.Minagawa S., Arakawa K. and Yamada M, Dispersion Curves for Waves in a Cubic Micropolar Medium with Reference to Estimations of the Material Constants for Diamond, Bulletin of the JSME., Vol. 24, No. 187, 1981.
34.Naik, R. A. and Crews Jr, J. H., Micromechanical analysis of fiber-matrix interface stresses under thermomechanical loadings. Composites Materials: Testing and Design, Vol. 11, ASTM STP 1206, ed. E. T. Camponeschi Jr. American Society for Testing and Materials, Philadelphia, PA, pp. 205-19, 1993.
35.Nemat-Nasser, S. and Hori, S., Micromechanics: Overall Proerties of Heterogeneous Materials. Elsevier, North-Holland, 1993.
36.Nye, J. F., Physical properties of crystals: their representation by tensors and matrices. Oxford university press, New York, 1985.
37.Okereke, M. I. and Akpoyomare, A. I., A virtual framework for prediction of full-field elastic response of unidirectional composites, Computational Materials Science, 70, 82-99, 2013.
38.Ostoja-Starzewski, M. and Jasiuk, I., Stress invariance in planar Crosserat elasticity, Proc. R. Soc. A. 451, 453, 1995.
39.Qu, J. and Cherkaoui, M., Fundamentals of Micromechanics of Solids, Wiley, New Jersey, 2006.
40.Rodriguez- Ramos, R., Medeiros, R. D., Guinovart-Diaz, R., Bravo-Castillero J., Otero, J. A. and Tita, V., Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Composite Structures, 99, 264-275, 2013.
41.Ryvkin M. and Aboudi J., Analysis of Local Thermomechanical Effects in Fiber- Reinforced Periodic Composites, Int. J. Fract, 145, 229-236, 2007.
42.Ryvkin, M. and Aboudi, J., The effect of a fiber loss in periodic composites. International Journal of Solids and Structures, 44, 3497-3513, 2007.
43.Suiker, A. S. J., Borst, R. de and Chang, C. S., Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica, 149, 161-180, 2001.
44.Sun, C.T. and Vaidya R. S., Prediction of Composite Properties from a Representative Volume Element. Composites Science and Technology, 56, 171-179, 1996.
45.Torquato, S., Random Heterogeneous Materials. Springer 2002.
46.Vardoulakis, I., Cosserat Continuum Mechanics, , National Meeting on Generalized Continuum Theories and Applications, 2009.
47.Waseem, A., Beveridge, A. J., Wheel, M. A. and Nash, D. H., The influence of void size on the micropolar constitutive properties of model heterogeneous materials. European Journal of Mechanics A/Solids, 40, 148-157, 2013.
48.Willis, J. R., Variational and related methods for the overall properties of composites, Advances in Applied Mechanics, Vol. 21, 1-78, 1981.
49.Wu, T. H., Chen, T. and Weng, C. N., Green’s functions and Eshelby tensor for and ellipsoidal inclusion in non-centrosymmetric and anisotropic micropolar medium, 2014.
50.Xia, Z., Zhang, Y. and Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures 40, 1907-1921, 2002.
51.Yuan, X. and Tomita, Y., A Homogenization Method for Analysis of Heterogeneous Cosserat Materials. Key Engineering Materials, Vols.177-180, pp 53-58, 2000.
52.Yuan, X. and Tomita, Y., Effective properties of Cosserat composites with periodic Microstructure. Mechanics Research Communications, 28, 265-270, 2001.
53.吳宗憲,Cosserat彈性介質之格林函數及內含物問題,國立成功大學土木工程研究所碩士論文,2014。54.張博威,具多重負頻帶之彈性超材料數值模擬,國立成功大學土木工程研究所碩士論文,2013。55.劉祐翔,圓柱中性扭轉問題於Cosserat彈性材料之探討,國立成功大學土木工程研究所碩士論文,2013。