跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡博如
研究生(外文):Po-JuTsai
論文名稱:大面積銀表面上的銀奈米立方體之尺寸效應於表面增強拉曼散射
論文名稱(外文):The Size Effect of Silver Nanocubes atop the Massed Silver Surface on Surface Enhanced Raman Scattering
指導教授:溫添進
指導教授(外文):Ten-Chin Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:銀奈米立方體表面增強拉曼散射表面電漿共振有限時域差分法
外文關鍵詞:Silver nanocubessurface-enhanced Raman scattering (SERS)surface plasmon resonancefinite difference time-domain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
  本論文之研究包含兩部分,第一部分為利用高分子合成方法製備出銀奈米立方體,在不同反應時間下得到不同尺寸奈米銀立方體在大面積銀表面之研究,透過不同拉曼光譜激發光波長發現平均粒徑為53.7奈米的銀奈米顆粒在激發光波長為633奈米比平均粒徑為72.06奈米的銀奈米立方體有更佳的Raman 增顯因子;反之,平均粒徑為72.06奈米之銀奈米顆粒在激發光波長為780奈米有比平均粒徑為53.7奈米之銀奈米顆粒有更佳的Raman 增顯因子;相較而言,在激發光波長為532奈米時,兩者的Raman 增顯因子有相似的結果。藉由紫外光/可見光光譜分析得知,在532奈米激發光波長下,因兩者之表面電漿共振波長位置都離其太遙遠,導致再Raman結果上並無差異;當激發光波長為633奈米時,平均粒徑為53.7奈米之銀奈米顆粒表面電漿共振波長位置:673奈米較靠近激發光波長633奈米因此有較佳之Raman增顯效果;當激發光波長為780奈米時,平均粒徑為72.06奈米之銀奈米顆粒表面電漿共振波長位置:715奈米較靠近激發光波長780奈米因此有較佳之Raman增顯效果。表示銀奈米立方體存在所對應之特定激發光波長進而達到拉曼增顯效應最大化。
  論文的第二部分為利用模擬方式了解銀奈米立方體於大面積銀表面於固定激發光波長下電場分布情形。結果顯示,當銀奈米立方體與銀表面之間存在空氣作為介電物質時,間隔層區域會產生強大的電場能量。因銀奈米立方體之尺寸效應會使表面電漿共振波長有所差異,導致在固定激發光波長下電場能量分布不同,在激發光波長為532奈米時,50奈米與70奈米之銀奈米立方體有相似之電場分布情況;當激發光波長為633奈米時,50奈米比70奈米之銀奈米立方體有更強大電場能量;當激發光波長為780奈米時,70奈米比50奈米之銀奈米立方體有更強大電場能量,此趨勢與前部分實驗結果相符,在固定激發光波長下,銀奈米立方體之尺寸具備選擇性以達到最大之電場能量分布。再藉由等效長度探討外漏場的長度,使待測物無須擴散到微小的間隔層內。
  本研究提供了基本的觀念與結果為銀奈米立方體存在所對應之特定波長以達到最大化之拉曼增顯效果,再藉由模擬方式分析電場分布情形,在未來製備新穎與高效能之基板時,提供了先以模擬方式快速粗略預測實驗結果以節省掉try&error的時間。

This research describes theoretical and experimental evaluations of electromagnetic fields around metallic nanostructures, such as separated by nano-scale distances. Nanostructures having different sizes and shapes were evaluated. The localized surface plasmon resonance (LSPR) of a nanoplasmonic particle is often considered to occur at a single resonant wavelength. However, the physical measures of plasmon resonance, namely the far-field measures of scattering, absorption, and extinction, and the near-field measures of surface-average or maximum electric field intensity, depend differently on the particle size, and hence may be maximized at different wavelengths. In this work, polyvinylpyrrolidone (PVP)-capped silver nanocubes (AgNCs) were synthesized using ethylene glycol as solvent and reducing agent through a simple, one-pot solvothermal method at 150°C. The SERS profiles obtained here serve as a basis to select silver nanocubes of specific size and composition with maximum SERS efficiency at their respective excitation wavelengths. Their potential for use as a versatile Raman signal amplifier was investigated experimentally using Rhodamin 6G as a probe molecule and theoretically by the three-dimensional finite difference time-domain (3D-FDTD) method. Furthermore, this approach offers a reliable prediction to involve the research about SERS substrates.
中文摘要 I
英文延伸摘要 III
誌謝 IX
目錄 XI
圖目錄 XIII
表目錄 XVI
符號 XVII
第一章 緒論 1
1-1. 表面增強拉曼散射 1
1-1-1. 拉曼光譜原理 1
1-1-2. 表面增強拉曼散射理論 2
1-1-3. 奈米材料的特性與其應用 6
1-1-4. 銀奈米立方體的特性與其應用 9
1-1-5. 銀奈米金屬的尺寸效應 10
1-1-6. Rhodamine 6G待測物應用於表面增強拉曼散射與其效果 11
1-1-7. 表面增強拉曼散射的發展 12
1-2. 金屬表面電漿 14
1-2-1. 金屬平面的表面電漿共振 14
1-2-2. 激發表面電漿的形式 14
1-2-3. 侷域性表面電漿共振 16
1-2-4. 奈米粒子-介電質-金屬結構 16
1-3. 電場模擬:有限時域差分法(FDTD) 18
1-3-1. 馬克斯威爾方程式簡介[49] 18
1-3-2. Yee網格與方程式離散化 20
1-3-3. 吸收邊界 21
1-3-4. 等效長度 22
1-4. 研究動機 23
第二章 銀奈米立方體之尺寸效應於大面積銀表面之拉曼光譜分析 30
2-1. 銀奈米立方體合成 31
2-1-1. 製備銀奈米立方體 31
2-1-2. 穿透式電子顯微鏡量測 32
2-1-3. 雷射光散射粒徑測定儀 33
2-1-4. 表面電漿共振波長分析 34
2-2. 銀奈米立方體之尺寸效應於不同激發光波長下拉曼特性分析 37
2-2-1. 大面積銀基板之製備 37
2-2-2. 銀奈米立方體利用噴霧型方式組裝於大面積銀表面 38
2-2-3. 不同激發光下拉曼光譜分析 39
2-2-4. 環境介電常數對於奈米粒子-介電質-金屬結構之影響 47
2-3. 結論 49
第三章 銀奈米立方體與不同激發光波長之模擬分析 61
3-1. 銀奈米立方體於銀表面間距層模擬分析 62
3-1-1. 間距層模擬分析 62
3-1-2. 模擬與表面粗糙度之結果與討論 64
3-2. 不同尺寸之銀奈米立方體於銀表面吸收圖譜模擬分析 66
3-2-1. 模擬結構條件與設定 66
3-2-2. 模擬之結果與討論 68
3-3. 不同尺寸銀奈米立方體於銀表面在固定激發光下之模擬分析 69
3-3-1. 模擬結構條件與設定 69
3-3-2. 模擬之結果與討論 71
3-4. 表面電漿子結構對等效長度之影響 74
3-4-1. 計算結果與討論 74
3-5. 結論 77
第四章 總結與建議 88
4-1. 總結 88
4-2. 未來工作建議 89
參考文獻 90

[1] A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti and D. R. Smith,Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature 492, 86 (2012)
[2] D. Wang, W. Zhu, Y. Chu and K. B. Crozier,High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering, Advanced Materials 24, 4376 (2012)
[3] L. Li, T. Hutter, A. S. Finnemore, F. M. Huang, J. J. Baumberg, S. R. Elliott, U. Steiner and S. Mahajan,Metal Oxide Nanoparticle Mediated Enhanced Raman Scattering and Its Use in Direct Monitoring of Interfacial Chemical Reactions, Nano Letters 12, 4242 (2012)
[4] J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari and J. J. Baumberg,Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene, Nano Letters 13, 5033 (2013)
[5] Q. A. Zhang, W. Y. Li, L. P. Wen, J. Y. Chen and Y. N. Xia,Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor, Chemistry-a European Journal 16, 10234 (2010)
[6] C.V.Raman,A New Type of Secondary Radiation, Nature 121, 501 (1928)
[7] A. J. McQuillan,The discovery of surface-enhanced Raman scattering, Notes and Records of the Royal Society 63, 105 (2009)
[8] M. Fleischmann, P. J. Hendra and A. J. McQuillan,Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters 26, 163 (1974)
[9] C. B. Moore,Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces, CHEMICAL AND BIOCHEMICAL APPLICATIONS OF LASERS Ⅳ, 101 (1979)
[10] J. A. Creighton,Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode, JACS 99, 5215 (1977)
[11] D. L. Jeanmaire and R. P. Van Duyne,Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1 (1977)
[12] D.-S. W. Milton Kerker, and H. Chew,Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles, Appl. Opt. 19, 4199 (1980)
[13] D. S. Wang and M. Kerker,Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids, Physical Review B 24, 1777 (1981)
[14] J. A. H. Xu, M. Käll and P. Apell,Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering, Physical Review E 62, 4318 (2000)
[15] F. W. King, R. P. Van Duyne and G. C. Schatz,Theory of Raman scattering by molecules adsorbed on electrode surfaces, The Journal of Chemical Physics 69, 4472 (1978)
[16] M. Moskovits,Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, The Journal of Chemical Physics 69, 4159 (1978)
[17] J. A. Creighton, C. G. Blatchford and M. G. Albrecht,Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 75, 790 (1979)
[18] 吳建成,金奈米粒子之綠色合成及磁性複合奈米粒子之製備, 國立成功大學化學工程學系,研究所博士論文,台灣 (2010)
[19] 莊萬發,超微粒子理論應用, 復漢出版社,台灣 (1995)
[20] 蘇品書,超微粒子材料技術, 復漢出版社,台灣 (1989)
[21] 林信宏,水相界面活性劑系統製備貴金屬奈米粒子之研究, 國立成功大學化學工程學系,研究所碩士論文,台灣 (2002)
[22] Y. Xiong and Y. Xia,Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium, Advanced Materials 19, 3385 (2007)
[23] Y. Xia,Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time, J. Phys. Chem. Lett. 1, 696-703 (2010)
[24] J. Kottmann, O. Martin, D. Smith and S. Schultz,Plasmon resonances of silver nanowires with a nonregular cross section, Physical Review B 64, 235402 (2001)
[25] X. Xia, W. Li, Y. Zhang and Y. Xia,Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells, Interface Focus 3, 20120092 (2013)
[26] S. Nie,Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles, J. Am. Chem. Soc. 120, 8009 (1998)
[27] 曾韋龍,金奈米材料於感測器之應用,國立中山大學化學系,化學 68,台灣 (2010)
[28] Y. Zhao, Y. Jiang and Y. Fang,Spectroscopy property of Ag nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 65, 1003 (2006)
[29] A. C. Sant'Ana, T. C. R. Rocha, P. S. Santos, D. Zanchet and M. L. A. Temperini,Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine, Journal of Raman Spectroscopy 40, 183 (2009)
[30] V. Uzayisenga, X.-D. Lin, L.-M. Li, J. R. Anema, Z.-L. Yang, Y.-F. Huang, H.-X. Lin, S.-B. Li, J.-F. Li and Z.-Q. Tian,Synthesis, Characterization, and 3D-FDTD Simulation of Ag@SiO2Nanoparticles for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy, Langmuir 28, 9140 (2012)
[31] A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste and I. Pastoriza-Santos,Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties, Langmuir 29, 15076 (2013)
[32] T. Qiu, X. L. Wu, J. C. Shen and P. K. Chu,Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy, Applied Physics Letters 89, 131914 (2006)
[33] G. Duan, W. Cai, Y. Luo, Z. Li and Y. Li,Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect, Applied Physics Letters 89, 211905 (2006)
[34] Y.-C. Liu, C.-C. Yu and S.-F. Sheu,Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates, Journal of Materials Chemistry 16, 3546 (2006)
[35] M. I. Stockman, L. N. Pandey, L. S. Muratov and T. F. George,Giant fluctuations of local optical fields in fractal clusters, Physical Review Letters 72, 2486 (1994)
[36] D. J. Bergman and M. I. Stockman,Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems, Physical Review Letters 90, 027402 (2003)
[37] S. Nie,Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science 275, 1102 (1997)
[38] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander and N. J. Halas,Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Letters 5, 1569 (2005)
[39] N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lerme, M. Hillenkamp and M. Pellarin,Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding, Acs Nano 5, 9450 (2011)
[40] K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz and R. P. Van Duyne,Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy, Journal of the American Chemical Society 132, 10903 (2010)
[41] J. P. Schmidt, S. E. Cross and S. K. Buratto,Surface-enhanced Raman scattering from ordered Ag nanocluster arrays, The Journal of Chemical Physics 121, 10657 (2004)
[42] X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart and R. P. Van Duyne,Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography, IEE Proceedings - Nanobiotechnology 152, 195 (2005)
[43] W. Hill,Silver films on diamond particles as substrates for surface-enhanced Raman scattering, Sensors and Actuators B 31, 292 (1998)
[44] R. Brayner, R. Iglesias, S. p. Truong, Z. Beji, N. Felidj, F. Fiévet and J. Aubard,Surface-Enhanced Raman Scattering on Silver Nanostructured Films Prepared by Spray-Deposition, Langmuir 26, 17465 (2010)
[45] B. Li, W. Zhang, L. Chen and B. Lin,A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device, Electrophoresis 34, 2162 (2013)
[46] H. Raether,Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, New York 111, (1988)
[47] A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin,Nano-optics of surface plasmon polaritons, Physics Reports 408, 131 (2005)
[48] G. I. Stegeman, R. F. Wallis and A. A. Maradudin,Excitation of surface polaritons by end-fire coupling, Optics Letters 8, 386 (1983)
[49] 鄭瑋銘,均勻與非均勻網格於轉換光學之光電模擬研究, 國立成功大學太空天文與電漿所,研究所碩士論文,台灣 (2011)
[50] Numerical Solution of Initial Boundary Value Problems Involving Maxell's Equations in Isotropic Media,
[51] A. Taflove,Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House (2005)
[52] J.-P. Berenger,A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics 114, 185 (1994)
[53] A. H. K. Sato, and H. Ishii,Chirp-Compensated 40-GHz Mode-Locked Lasers Integrated with Electriabsorption Modulators and Chirped Gratings, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 5, 590 (1999)
[54] Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz and M. V. Andrés,Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings, Optics Express 14, 6394 (2006)
[55] B. Jacobsson, V. Pasiskevicius and F. Laurell,Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity, Optics Express 14, 9284 (2006)
[56]蔡定平,邱國斌,金屬表面電漿簡介, 物理雙月刊 28, 472 (2006)
[57] S. E. Skrabalak, L. Au, X. Li and Y. Xia,Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protocols 2, 2182 (2007)
[58] S. Nakashima, A. Yamamoto, Y. Asada, N. Koga and T. Okuda,New assembled Fe-trans-1,2-bis(4-pyridyl)ethylene-NCS(NCSe) complexes – hydrogen bonded and π–π interacted structure and grid structure enclathrating ligand, Inorganica Chimica Acta 358, 257 (2005)
[59] W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang and H. X. Xu,Ag@SiO2 Core-Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering, Acs Nano 3, 3493 (2009)
[60] Z. Y. Chen, Z. M. Dai, N. Chen, S. P. Liu, F. F. Pang, B. Lu and T. Y. Wang,Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection, Ieee Photonics Technology Letters 26, 777 (2014)
[61] T. Gao, Y. Q. Wang, K. Wang, X. L. Zhang, J. N. Dui, G. M. Li, S. Y. Lou and S. M. Zhou,Controlled Synthesis of Homogeneous Ag Nanosheet-Assembled Film for Effective SERS Substrate, Acs Applied Materials & Interfaces 5, 7308 (2013)
[62] 林珮瑋,銀奈米線構成之大範圍網狀結構與其表面增強拉曼散射光譜之研究, 國立成功大學化學工程學系,研究所博士論文,台灣 (2012)
[63] Y.-L. Liu, C.-Y. Fang, C.-C. Yu, T.-C. Yang and H.-L. Chen,Controllable Localized Surface Plasmonic Resonance Phenomena in Reduced Gold Oxide Films, Chemistry of Materials 26, 1799 (2014)
[64] S. Kawata, H. Wei, Z. Li, Y. Fang, F. Hao, T. Shegai, T. Dadosh, Y. Huang, W. Wang, Z. Zhang, G. Haran, P. Nordlander, H. Xu, V. M. Shalaev and D. P. Tsai,Control light propagation and polarization with plasmons for surface-enhanced Raman scattering, 7395, 73950T (2009)
[65] Y. Sharma and A. Dhawan,Hybrid nanoparticle–nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances, Nanotechnology 25, 085202 (2014)
[66] A. D. Rakic, A. B. Djuri?ic, J. M. Elazar and M. L. Majewski,Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Applied Optics 37, 5271 (1998)
[67] J. B. Lassiter, F. McGuire, J. J. Mock, C. Ciracì, R. T. Hill, B. J. Wiley, A. Chilkoti and D. R. Smith,Plasmonic Waveguide Modes of Film-Coupled Metallic Nanocubes, Nano Letters 13, 5866 (2013)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top