跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱春霖
研究生(外文):Chuen-LinChiu
論文名稱:探討Polyethyleneglycol及LiTFSI對雙陽離子液體傳輸現象及物理性質的影響
論文名稱(外文):The Effect of Polyethyleneglycol and LiTFSI on the Transport and Physical properties of Dicationic Ionic Liquids
指導教授:蘇世剛
指導教授(外文):Shyu-Gang Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:雙陽離子液體PEG200ECLiTFSI黏度導電度擴散係數傳輸性質物理性質
外文關鍵詞:dicationic liquidsPEG200ECLiTFSIviscosityconductivitydiffusion coefficienttransport propertiesphysical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文第一部分使用兩種雙陽離子液體,[IMCI][TFSI] (3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide,S1)、[IMOI][TFSI] (3,3'- (octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl) amide, S2) 與溶劑Poly ethylene glycol (PEG200) 摻混成11種不同濃度離子液體(PEG200莫爾分率x=0~1)。第2部分則是使用 [IMCI] [TFSI]、[IMOI][TFSI]加入莫耳分率約0.7的Ethylene carbonate (EC),與Lithium bis(trifluoromethylsulfonyl)amide(LiTFSI)摻混成4種不同濃度離子液體(LiTFSI莫爾分率x=0.0757、0.1403、0.1969、0.2464)。最後測量在不同溫度下,這些樣品密度、黏度、導電度、擴散係數的變化。
  第一部份中,[IMCI][TFSI] (S1)隨著PEG200濃度(莫耳分率x=0~1)的變化,密度及黏度下降,導電度擴散係數上升,解離程度沒有太大變化,表示PEG200的加入,只會使[IMCI][TFSI] (S1)從較大的clusters變成較小的clusters而使得整個系統黏度下降,導電度上升。因此PEG200的加入對[IMCI][TFSI] (S1)系統傳輸及物理性質的影響,黏度下降是其主要貢獻。[IMOI][TFSI] (S2)隨著PEG200濃度的增加,密度及黏度下降,導電度及擴散係數上升,解離程度則變小,但[IMOI][TFSI] (S2)加入PEG200的黏度比較接近理想黏度,表示PEG200因為在組成結構上與[IMOI][TFSI] (S2)的陽離子鏈接鏈相似(都是-C-O-C- 鍵),比起[IMCI][TFSI] (S1)有更好的packing (PEG200與[IMOI] 陽離子間的作用)。雖然PEG200與S2的陽離子鏈接鏈上有組成相似,然而卻造成解離率下降,且黏度下降比率及導電度上升比率會比S1系統低。因此PEG200的加入在S2系統中在物化性質的影響,黏度下降也是主要貢獻,但其貢獻度對低於PEG200對S1系統的影響。
  第2部分[IMCI][TFSI] (S1) 、[IMOI][TFSI] (S2)與濃度約0.7莫耳分率的EC摻混後,密度及黏度下降,導電度及擴散係數上升而且解離程度下降。這是由於EC的加入對系統有稀釋作用,S1、S2中離子液體的分子間作用力變小,造成整體系統密度及黏度下降,所以導致導電度及擴散係數的上升。而且S1與EC摻混後黏度下降率及導電度上升率都會比S2大,顯示EC的摻混,類似於PEG200摻混,可能對S1的溶液結構有較明顯的改變,導致黏度下降比率比S2系統高。再加入不同濃度的鋰鹽LiTFSI (莫耳分率x=0.08、0.14、0.2、0.25)後,[IMCI][TFSI] (S1) 、[IMOI][TFSI] (S2)隨著LiTFSI濃度上升,與EC摻混相比,密度及黏度反而上升,導電度及擴散係數下降。這是因為鋰鹽LiTFSI的加入與系統中陰離子TFSI-形成[Li(TFSI)n+1]n- complex,而且Li+會與EC水合而減弱了EC的摻混效應,因此系統黏度上升,而且隨著LiTFSI加入的濃度越大而黏度越大,導電度及擴散係數下降。同時由於離子液體陽離子擴散係數為鋰離子擴散係數4倍,陰離子擴散係數為鋰離子擴散係數的5倍,也顯示Li+的mobility在系統中是小的,因此Li+的transport number 皆小於百分之三。而S1、S2系統中加入LiTFSI時黏度值相近(S1=90.9cp,S2=90.3cp at 30 oC),由於[Li(TFSI)n+1]n- complex的形成,而且Li+會與EC水合,成為決定黏度主要因素,所以S1、S2黏度性質表現相近,而黏度是決定此融鹽摻混體系傳輸性質及物理性質的主要因素。
  總結S1、S2與PEG200、EC及鋰鹽LiTFSI摻混結果得知,當S1、S2與其他溶劑摻混或加入其他化學物質時,決定其傳輸性質與物理性質的主要原因是黏度。


The effects of the incorporation of polyethyleneglycol (PEG200). ethylene carbonate (EC), or LiTFSI on the physicochemical and transport properties of dicationic ionic liquids (ILs) [IMCI][TFSI] (3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide, S1) and [IMOI][TFSI] (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium)bis(trifluoromethylsulf- onyl) amide, S2) were studied. The evolution of the density, viscosity, ionic conductivity, and diffusion coefficient were evaluated. The addition of PEG200 in IL electrolyte S1 or S2 with 0 〈 x (mole fraction) 〈 1 has been investigated. This addition reduces the density and viscosity, and enhances the ionic conductivity and diffusion coefficient, the viscosity decrease in S2 is less pronounced than in S1, and therefore no appreciable change in ion dissociation in S1 but a decrease in S2, showing that the viscosity change plays the important role leading to the beneficial effect of the additive solvent PEG200. Furthermore, from the opposed trend of ion dissociation in S1 and S2, the addition of PEG200 decreases the ion association in S1, but the ion association decrease is lower in S2 due to the same –C-O-C- chain component in both PEG200 and S2. The addition of EC (x=0.7) in IL electrolyte S1 or S2 reduces the density and viscosity, and enhances the ionic conductivity and diffusion coefficient. whereas unlike the addition of PEG200, ion dissociation decreases in both S1 and S2 due to the dissociation or solvation effect of EC. However, as the addition of PEG200. the viscosity decrease and the conductivity increase in S1 is more pronounced than in S2, indicating that the addition of oxygen-containing EC may induce a more dramatic liquid structure change in S1 with aliphatic linking chain. The conductivity and the diffusion coefficient values for the ILs + 0.7 mole fraction EC + LiTFSI (x=0.0757、0.1403、0.1969、0.2464) are lower than those obtained with ILs + 0.7 mole fraction EC, the viscosity and the density values higher, and for self-diffusion coefficient, the cation 4 times and the anion 5 times higher than the Li ion in the ILs + 0.7 mole fraction EC + LiTFSI. This indicates that on the addition of LiTFSI, the formation of complex [Li(TFSI)n+1]n- and the solvation of Li+ by EC increase the ion association, and then result in a higher viscosity. In conclusion, the mixtures of dicationic IL and PEG200, EC, or TFSI constitute an interesting solvent with the physicochemical and transport properties governed mainly by viscosity change in different manners.

摘要 I
Abstract IV
致謝 VI
目錄 VII
表目錄 X
圖目錄 XII
第一章 序論 1
1-1 前言 1
1-2 離子液體的定義 3
1-3 雙陽離子類型的離子液體 5
1-4 研究動機 7
第二章 理論簡介 9
2-1 核磁共振儀 9
2-1-1 核磁共振 Nuclear Magnetic Resonance, NMR 9
2-1-2 核磁共振的歷史背景 9
2-1-3 核磁共振的基本原理 11
2-1-4 遮蔽效應與化學位移 13
2-1-5 核磁共振的弛緩機制 14
2-1-6 順磁性物種效應( effect of paramagnetic species ) 16
2-2 擴散係數 (diffusion coefficient) 18
2-3 密度 20
2-4 黏度 20
2-5 導電度 21
第三章 實驗樣品及儀器 22
3-1 實驗藥品 22
3-2 樣品配製 24
3-3 實驗儀器裝置 26
3-4 實驗方法 27
第四章 結果與討論 33
4-1 [IMCI][TFSI] (S1)、[IMOI][TFSI] (S2)與Polyethylene- glycol (PEG200) 摻混後性質的變化 33
4-1-1 密度(體積) 33
4-1-2 黏度 40
4-1-3導電度 48
4-1-4 擴散係數 56
4-1-5 DF-/DH+、Dpeg/DH+ 64
4-1-6 解離程度 71
4-2 S1、S2加入EC後與Li鹽摻混 76
4-2-1 密度(體積) 76
4-2-2 黏度 80
4-2-3 導電度 84
4-2-4 擴散係數 88
4-2-5 陰陽離子遷移數 95
4-2-6 DF-/DH+、DEC/DH+ 98
4-2-7 解離程度 103
第五章 結論 105
參考文獻 109

(1)Zhao, H.; Malhotra, S. V. Biotechnol. Lett. 2002, 24, 1257.
(2)Kaar, J. L.; Jesionowski, A. M.; Berberich, J. A.; Moulton, R.; Russell, A. J. Journal of the American Chemical Society 2003, 125, 4125.
(3)Lee, J. K.; Kim, M.-J. The Journal of Organic Chemistry 2002, 67, 6845.
(4)Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Australian Journal of Chemistry 2004, 57, 113.
(5)Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106.
(6)Hapiot, P.; Lagrost, C. Chemical Reviews 2008, 108, 2238.
(7)Endres, F.; Zein El Abedin, S. Physical Chemistry Chemical Physics 2006, 8, 2101.
(8)MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Pringle, J. M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Accounts of Chemical Research 2007, 40, 1165.
(9)Zeng, Z.; Phillips, B. S.; Xiao, J.-C.; Shreeve, J. n. M. Chemistry of Materials 2008, 20, 2719.
(10)Koel, M. Critical Reviews in Analytical Chemistry 2005, 35, 177.
(11)Tan, S. S. Y.; MacFarlane, D. R.; Upfal, J.; Edye, L. A.; Doherty, W. O. S.; Patti, A. F.; Pringle, J. M.; Scott, J. L. Green Chemistry 2009, 11, 339.
(12)Sun, H.; Zhang, D.; Liu, C.; Zhang, C. Journal of Molecular Structure: THEOCHEM 2009, 900, 37.
(13)Anastas, P. T. W., J. C. Green Chemistry: Theory and Practice; Press: New York, 1998; Vol. null.
(14)Shirota, H.; Mandai, T.; Fukazawa, H.; Kato, T. Journal of Chemical & Engineering Data 2011, 56, 2453.
(15)Zana, R. Current Opinion in Colloid & Interface Science 1996, 1, 566.
(16)Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. Journal of the American Chemical Society 2004, 127, 593.
(17)Anderson, J. L. A., D. W. Anal. Chem. 2005, 77, 6453.
(18)Qi, M.; Armstrong, D. Analytical and Bioanalytical Chemistry 2007, 388, 889.
(19)Huang, K.; Han, X.; Zhang, X.; Armstrong, D. Analytical and Bioanalytical Chemistry 2007, 389, 2265.
(20)Han, X.; Armstrong, D. W. Organic Letters 2005, 7, 4205.
(21)Jin, C.-M.; Ye, C.; Phillips, B. S.; Zabinski, J. S.; Liu, X.; Liu, W.; Shreeve, J. n. M. Journal of Materials Chemistry 2006, 16, 1529.
(22)Yu, G.; Yan, S.; Zhou, F.; Liu, X.; Liu, W.; Liang, Y. Tribology Letters 2007, 25, 197.
(23)Palacio, M.; Bhushan, B.; 4 ed.; AVS: 2009; Vol. 27, p 986.
(24)Zhang, Z.; Zhou, H.; Yang, L.; Tachibana, K.; Kamijima, K.; Xu, J. Electrochimica Acta 2008, 53, 4833.
(25)Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N.-G.; Ahn, K.-D. Journal of Power Sources 2008, 175, 692.
(26)Zafer, C.; Ocakoglu, K.; Ozsoy, C.; Icli, S. Electrochimica Acta 2009, 54, 5709.
(27)Purcell, E. M.; Torrey, H. C.; Pound, R. V. Physical Review 1946, 69, 37.
(28)Bloch, F.; Hansen, W. W.; Packard, M. Physical Review 1946, 69, 127.
(29)甘魯生, 電子月刊, 1998, 36, 55
(30)Arnold, J. T.; Dharmatti, S. S.; Packard, M. E. The Journal of Chemical Physics 1951, 19, 507.
(31)Tyrrell, H. J. V. H., K. R. Diffusion in Liquids Butterworths: London, 1984.
(32)Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems Cambridge University Cambridge, 1984.
(33)Stejskal, E. O.; Tanner, J. E. The Journal of Chemical Physics 1965, 42, 288.
(34)L., C. E. Diffusion-Mass Transfer in Fluid Systems Cambridge University Press: Cambridge, 1984.
(35)Noda, A.; Hayamizu, K.; Watanabe, M. The Journal of Physical Chemistry B 2001, 105, 4603.
(36)Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. The Journal of Physical Chemistry B 2004, 108, 16593.
(37)Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. The Journal of Physical Chemistry B 2005, 109, 6103.
(38)Tokuda, H.; Ishii, K.; Susan, M. A. B. H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. The Journal of Physical Chemistry B 2006, 110, 2833.
(39)Fromling, T.; Kunze, M.; Schonhoff, M. The Journal of Physical Chemistry B 2008, 112, 12985.
(40)Le, M. L. P.; Alloin, F.; Strobel, J. Phys. Chem. B 2010, 114, 894-903.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top