跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家弘
研究生(外文):Jia-HungLin
論文名稱:探討蝦類Dscam於白點症病毒感染時之免疫機制
論文名稱(外文):Dscam-mediated immune response to WSSV infection
指導教授:王涵青王涵青引用關係
指導教授(外文):Han-Ching Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:南美白對蝦白點症病毒唐氏綜合症細胞黏附分子
外文關鍵詞:Litopenaeus vannameiWhite spot syndrome virusDown syndrome cell adhesion molecule.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室發現之蝦類高變異性分子 Dscam 的研究顯示,蝦體免疫具有專一性識別不同病原體的特性。在蝦體中,Dscam 存在兩種形式:具有胞質尾的鑲膜型 Dscam 及不具胞質尾的胞泌型 Dscam;胞外區域可經由選擇性剪切產生多變性以參與病原體辨認,而在胞質尾部分之多變性推測可驅使不同下游訊息反應。由於蝦類 Dscam 對於病原體所誘發的免疫特性及反應過程並未被討論,因此本研究乃以白點症病毒作為刺激物,觀測 Dscam 在感染過程的表現模式。結果顯示,在免疫相關組織所表現的鑲膜型 Dscam,其胞質尾帶有免疫相關功能性區域的比例遠超過其他組織,顯示其參與蝦體免疫功能的可能性。在全蝦體組織之整體 Dscam 的變化情形則顯示,病毒感染可誘發蝦體血細胞產生胞泌型 Dscam,推測胞泌型 Dscam 可被分泌進入血淋巴中以識別病原體。本研究接續以螯蝦作為實驗動物以進行長期觀察,從中發現在感染病毒後的存活者,其血漿中可偵測到較高量的 Dscam。利用膠體過濾分析,顯示其可能具有形成多聚體特性。根據以上結果,本研究推測,蝦類 Dscam 在剪切機制、免疫反應及分子結構上,相似於脊椎動物抗體 IgM,也具有相似的作用機制,並參與在白蝦對抗白點症病毒過程中。
Until now, the mechanism of shrimp immune response still not fully understood. Previously, we found that shrimp has a hypervariable molecule called Down syndrome cell adhesion molecule (Dscam) which can recognize different pathogens. Based on Dscam structure and immune properties, Dscam has been proposed to be an antibody-like molecule in arthropod. In this study we use white spot syndrome virus (WSSV) as pathogen stimulator to observe the Dscam’s cytoplasmic tail variants expression in various tissue after WSSV infection. The results show that cytoplasmic tail element 1A which consist of an endocytosis motif was expressed mainly in immune-related tissues, while element 1B which lack of this motif and expressed mainly in non-immune related tissues.So, cytoplasmic tail element 1A may be involved in Dscam immune function. Furthermore, the membrane-bound and tail-less Dscam expressions were analyzed in various tissue after WSSV infection. In hemocyte, tail-less Dscam can be induced after 36 hour post WSSV infection. Thus, we hypothesized that high amount of tail-less Dscam can be secreted into hemolymph after pathogen challenge. In order to test the hypothesis, hemolymph from two months crayfish survivors after WSSV infection were collected. High level Dscam expression was detected in the WSSV survivor’s hemolymph. To investigate whether Dscam has similar property with IgM. We use gel filtration to analyze the possibility of Dscam forms polymer in hemolymph. The result shows that Dscam may form dimer or heterpolymer in the hemolymph. Taken together, based on Dscam cytoplasmic tail splicing mechanism, the secretion ability of Dscam after pathogen challenge and the polymer structure, this study suggested that Dscam may be an IgM-like moleculer in arthropod..
目錄
中文摘要...............................................I
英文摘要..............................................II
誌謝.................................................VII
目錄..................................................IX
表目錄...............................................XII
圖目錄..............................................XIII
縮寫表................................................XV
一、前言...............................................1
1-1 全球水產養殖現況....................................1
1-2 台灣蝦類養殖面臨之問題...............................1
1-3 蝦類免疫系統........................................3
1-4 無脊椎動物免疫專一性及記憶性.........................4
1-5 免疫印記 (Immune priming) 及免疫相關之多樣性分子......5
1-6 Dscam 結構及功能研究................................6
1-7 Dscam 在白蝦之研究..................................8
1-8 疫苗對蝦類之研究.....................................9
二、研究方法及進行步驟..................................11
2-1 實驗動物及病毒源....................................11
2-2 實驗設計及實驗動物配置...............................11
2-3 Total RNA 萃取.....................................14
2-4 反轉錄聚合酶連鎖反應 (RT-PCR).......................14
2-5 PCR 產物純化.......................................15
2-6 基因選殖確認 (Bule and white screening)............16
2-7 菌落聚合酶連鎖反應 (colony PCR).....................17
2-8 質體 DNA 萃取......................................18
2-9 限制酶切割及定序....................................18
2-10 即時定量聚合酶連鎖反應 (Real-time PCR)..............19
2-11 利用膠體過濾分析 Dscam 之結構.......................19
2-12 利用大腸桿菌 BL-21 (DE3) 表現重組 VP28..............23
2-13 VP28 蛋白表現確認..................................25
2-14 VP28 次單位疫苗注射................................27
三、實驗結果............................................28
3-1 Cytoplasmic tail element 1A/B 具有組織特異性........28
3-2 在白點症病毒感染後 E1A 出現頻率提升...................28
3-3 WSSV感染後血球細胞中 Dscam以 Tail-less 形式為主......29
3-4 分泌型 Dscam 存在於白點症病毒感染後之血淋巴中.........31
3-5 Dscam 會以多聚體形式存在於螯蝦血淋巴中................32
3-6 白蝦在VP28注射後能有效獲得保護力.....................33
3-7 白蝦在 VP28 注射後能誘導 Tail-less Dscam 表現提升....34
四、討論...............................................36
4-1 Cytoplasmic tail element 1A/B在全組織的分布情形.....37
4-2 E1A/B 在病原性病原體白點症病毒刺激後之表現情形........38
4-3 兩種不同型式之 Dscam 在白點症病毒感染後表現情形.......39
4-4 螯蝦 Dscam 在白點症病毒感染後血淋巴的表現情形.........41
4-5 螯蝦血淋巴中 Dscam 之構型分析........................42
4-6 白蝦以 VP28 次單位疫苗注射後之保護效率 ...............43
4-7 白蝦在 VP28 注射後能誘導 Tail-less Dscam 表現提升....43
五、參考文獻............................................46

表目錄
表一、本論文中使用之引子.................................54
表二、Dscam 與抗體特性之比較.............................55


圖目錄
圖一、分析 Cytoplasmic Element 1A/B 在全組織的分布情形...56
圖二、分析在白點症病毒或PBS 注射後,鰓在胞質尾區域E1A 及 E1B
的變化情形..............................................57
圖三、分析在白點症病毒或 PBS 注射後,淋巴器官在胞質尾區域 E1A
及 E1B 的變化情形 .......................................58
圖四、Tail-less Dscam 在白點症病毒感染之後於不同時間點表現情形之絕對值..............................................59
圖五、Membrane-bound Dscam 在白點症病毒感染之後於不同時間點表現情形之絕對值........................................62
圖六、Tail-less Dscam 在白點症病毒感染之後於不同時間點表現情形之改變倍數..........................................65
圖七、Membrane-bound Dscam 在白點症病毒感染之後於不同時間點表現情形之改變倍數......................................68
圖八、利用Western blot 檢測澳洲螯蝦之血淋巴中確實存在分泌Dscam 分子.............................................71
圖九、不同 Dscam 分子量及異構型..........................72
圖十、VP28 疫苗實驗設計及保護效力........................74
圖十一、 Tail-less Dscam 在 VP28 次單位疫苗注射後於不同時間點之表現情形..............................................75
圖十二、 VP28 在白點症病毒感染之後於不同時間點表現情形之改變倍數.....................................................77
圖十三、 利用 Western blot 檢測澳洲螯蝦之血淋巴中不同分子量Dscam 分子.............................................80
圖十四、 LvDscam isoform 20 (2) 藉由 LC-MS/MS 分析後所得之胺基酸片段..............................................81
圖十五、 LvDscam isoform 20 (3) 藉由 LC-MS/MS 分析後所得之胺基酸片段..............................................83
圖十六、 W4 (4) 藉由 LC-MS/MS 分析後所得之胺基酸片段......85
圖十七、 W4 (5) 藉由 LC-MS/MS 分析後所得之胺基酸片段......87
圖十八、 W4 (6) 藉由 LC-MS/MS 分析後所得之胺基酸片段......89

莊雅竹,白蝦類專一性免疫作用分子 Dscam 之蛋白質特性分析,國立成功大學生物科技研究所碩士論文,2011。

洪欣宜,由細菌性及病毒性病原體所誘發隻白蝦 Dscam 探討其可能免疫作用機制,國立成功大學生物科技研究所碩士論文,2012。

黃芷菡,病毒誘發之高變異 Dscam 以類調理素方式參與螯蝦免疫記憶性,國立成功大學生物科技研究所碩士論文,2013。

Agarwala, K.L., Nakamura, S., Tsutsumi, Y., Yamakawa, K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Molecular Brain Research 79,118-126, 2000.

Agarwala, K.L., Ganesh, S., Tsutsumi, Y., Suzuki, T., Amano, K., Yamakawa, K. Cloning and functional characterization of DSCAM, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochemical and Biophysical Research Communications 285, 760-772, 2001.

Aguirre-Guzman, G., Sanchez-Martinez, JG., Campa-Cordova, A.I., Luna-Gonzalez, A., Ascencio, F. Penaeid shrimp immune system. The Thai Journal of Veterinary Medicine 39, 205-215, 2009.

Bianchi, G., Camilleri, M., Chopin, F., Farmer, T., Franz, N., Fuentevilla, C., Garibaldi, L., Grainger, R., Hishamunda, N., Jara, F., Karunasagar, I., Laurenti, G., Lem, A., Lugten, G., Turner, J., Vannuccini, S., Willmann, R., Ye, Y., Zhou, X., Montanaro, S. World review of fisheries and aquaculture. The State of World Fisheries and Aquaculture. Food and Agricultural Organization, Rome, 3-93, 2014.

Brewer, J.W., Randall, T.D., Parkhouse, R.M., Corley, R.B. Mechanism and subcellular localization of secretory IgM polymer assembly. The Journal of Bio-Logical Chemistry 269, 17338-17348, 1994.

Castro, R., Jouneau, L., Pham, H.P., Bouchez, O., Giudicelli, V., Lefranc, M.P., Quillet, E., Benmansour, A., Cazals, F., Six, A., Fillatreau, S., Sunyer, O., Boudinot, P. Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathogens 9, e1003098, 2013.

Cerutti, A. The regulation of IgA class switching. Nature Reviews Immunology 8, 421-434, 2008.
Chambliss, A., Fahey, C., Lydick, E., Levy, S. World population highlights. World Population Data Sheet, Population Reference Bureau, Washington, 3-18, 2012.

Chen, I.T., Aoki, T., Huang, Y.T., Hirono, I., Chen, T.C., Huang, J.Y., Chang, G.D., Lo, C.F., Wang, H.C. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. Journal of Virology 85, 12919-12928, 2011.

Chou, H.Y., Huang, C.Y., Wang, C.H., Chiang, H.C., Lo, C.F. Pathogeneicity of a baculovirus infection causing White Spot Syndrome in cultured penaeid shrimp in Taiwan. Diseases of Aquatic Organisms 23, 165-173, 1995.

Chou, P.H., Chang, H.S., Chen, I.T., Lin, H.Y., Chen, Y.M., Yang, H.L., Wang, H.C. The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Developmental and Comparative Immunology 33, 1258-1267, 2009.

Chou, P.H., Chang, H.S.,Chen, I.T., Lee, C.W., Hung, H.Y., Wang, H.C. Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish and Shellfish Immunology 30, 1109-1123, 2011.

De Schryver, P., Defoirdt, T., Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathogens 10, e1003919, 2014.

Dong, Y., Taylor, H.E., Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biology 4, e229, 2006.

Du, H.H., Xu, Z.R., Wu, X.F., Li, W.F., Dai, W. Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus. Aquaculture 260, 39-43, 2006.

Ehrenstein, M.R., Notley, C.A. The importance of natural IgM: scavenger, protector and regulator. Nature Reviews Immunology 10, 778-786, 2010.

Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R., Hood, L. Two mRNAs can be produced from a single immunoglobulin gene by alternative RNA processing pathways. Cell 20, 313-319, 1980.

Fearon, D.T. and Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science 272, 50-53, 1996.

Flegel, T.W. Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of Invertebrate Pathology 110, 166-173, 2012.

Frutiger, S., Hughes, G.J., Paquet, N., Lüthy, R., Jaton, J.C. Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry 31, 12643-12647, 1992.

George, M.R., Maharajan, A., John, K.R., Prince Jeyaseelan, M.J. Shrimps survive white spot syndrome virus challenge following treatment with Vibrio bacterin. Indian Journal of Experimental Biology 44, 63-67, 2006.

Grasso, P., Gangolli, S., Gaunt, Ian. Innate immunity: the first lines of defense. Essentials of Pathology for Toxicologists, Taylor & Francis, London, 37-73, 2002.

Hoffmann, J.A. and Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nature Immunology 3, 121-126, 2002.

Hsueh, Y.S. The Transformation of Taiwan into “the Empire of the Giant Tiger Prawn (1968-1988): The Roles of the Government and the People. Bulletin of Academia Historica 24, 139-176, 2010.

Hung, H.Y, Ng, T.H., Lin, J.H., Chiang, Y.A., Chuang, Y.C., Wang, H.C. Properties of Litopenaeus vannamei Dscam (LvDscam) isoforms related to specific pathogen recognition. Fish and Shellfish Immunology 35, 1272-1281, 2013.

Johnson, K.N., van Hulten, M.C., Barnes, A.C. “Vaccination of shrimp against viral pathogens: Phenomenology and underlying mechanisms. Vaccine 26, 4885-4892, 2008.

Kerr, M.A. The structure and function of human IgA. Biochemical Journal 271, 285-296, 1990.

Kumar, H., Kawai, T., Akira, S. Pathogen recognition by the innate immune system. International Reviews of Immunology 30, 16-34, 2011.

Kurtz, J. and Armitage, S.A. Alternative adaptive immunity in invertebrates. Trends in Immunology 27, 493-496, 2006.

Lightner, D.V. and Lewis, D.H. A septicemic bacterial disease syndrome of penaeid shrimp. Marine Fisheries Review 37, 25-28, 1975.

Lightner, D.V. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. Journal of Invertebrate Pathology 106, 110-130, 2011.

Little, T.J. and Kraaijeveld, A.R. Ecological and evolutionary implications of immunological priming in invertebrates. Trends in Ecology and Evolution 19, 58-60, 2004.

Mavichak, R., Kondo, H., Hirono, I., Aoki, T. The utilization of VP28 gene to protect penaeid shrimps from white spot syndrome virus disease: a review, Diseases of Aquatic Organisms 70, 167-170, 2011.

Medzhitov, R. and Janeway, C.A. Innate immune induction of the adaptive immune response. Cold Spring Harbor Symposia on Quantitative Biology 64, 429-435, 1999.

Mylonakis, E. and Aballay, A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infection and Immunity 73, 3833-3841, 2005.

Namikoshi, A., Wu, J.L., Yamashita, T., Nishizawa, T., Nishioka, T., Arimoto, M. Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 229, 25-35, 2004.

Neves, G., Zucker, J., Daly, M., Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genetics 36, 240-246, 2004.

Ng, T.H., Chiang, Y.A., Yeh, Y.C., Wang, H.C. Review of Dscam-mediated immunity in shrimp and other arthropods. Developmental and Comparative Immunology 46, 129-138, 2014.

Ng, T.H., Hung, H.Y., Chiang, Y.A., Lin, J.H., Chen, Y.N., Chuang, Y.C., Wang, H.C. WSSV-induced crayfish Dscam shows durable immune behavior. Fish and Shellfish Immunology 40, 78-90, 2014.

Niles, M.J., Matsuuchi, L., Koshland, M.E. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: Evidence that J chain is required for pentamer IgM synthesis. Proceedings of the National Academy of Sciences of the United States of America 92, 2884-2888, 1995.

Pancer, Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proceedings of the National Academy of Sciences of the United States of America 97, 13156-13161, 2000.

Pancer, Z. and Cooper, M.D. The evolution of adaptive immunity. Annual Review of Immunology 24, 497-518, 2006.

Pham, L.N., Dionne, M.S., Shirasu-Hiza, M., Schneider, D.S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathogen 3, e26, 2007.

Pope, E.C., Powell, A., Roberts, E.C., Shields, R.J., Wardle, R., Rowley, A.F. Enhanced cellular immunity in shrimp (Litopenaeus vannamei) after 'vaccination'. PLoS One 6, e20960, 2011.
Portela, J., Duval, D., Rognon, A., Galinier, R., Boissier, J., Coustau, C., Mitta, G., Théron, A., Gourbal, B. Evidence for specific genotype-dependent immune priming in the lophotrochozoan Biomphalaria glabrata snail. Journal of Innate Immunity 5, 261-276, 2013.

Rodrigues, J., Brayner, F.A., Alves, L.C., Dixit, R., Barillas-Mury, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329, 1353-1355, 2010.

Rout, N., Kumar, S., Jaganmohan, S., Murugan, V. DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine 25, 2778-2786, 2007.

Saha, N.R., Suetake, H., Suzuki, Y. Analysis and characterization of the expression of the secretory and membrane forms of IgM heavy chains in the pufferfish, Takifugu rubripes. Molecular Immunology 42, 113-124, 2005.
Schmucker, D. Molecular diversity of Dscam: Recognition of molecular identity in neuronal wiring. Nature Reviews Neuroscience 8, 915-920, 2007.

Schatz, D.G., Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 11, 251-263, 2011.

Schramm, R.D., Li, S., Harris, B.S., Rounds, R.P., Burgess, R.W., Ytreberg, F.M., Fuerst, P.G. A novel mouse Dscam mutation inhibits localization and shedding of DSCAM. PLoS One 7, e52652, 2012.

Song, Y.L. and Li, C.Y. Shrimp immune system-special focus on penaeidin. Journal of Marine Science and Technology 22, 1-8, 2014.

Stuart, L.M. and Ezekowitz, R.A. Phagocytosis and comparative innate immunity: learning on the fly. Nature Reviews Immunology 8, 131-141, 2008.

Syed Musthaq, S.K., Kwang, J. Evolution of specific immunity in shrimp a vaccination perspective against white spot syndrome virus. Developmental and Comparative Immunology 46, 279-290, 2014

Tidbury, H.J., Pedersen, A.B., Boots, M. Within and transgenerational immune priming in an insect to a DNA virus. Proceedings of the Royal Society B: Biological Sciences 278, 871-876, 2011.

Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575-581, 1983.

Tran, L., Nunan, L., Redman, R.M., Mohney, L.L., Pantoja, C.R., Fitzsimmons, K., Lightner, D.V. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms 105, 45-55, 2013.

Vargas-Albores, F. and Yepiz-Plascencia, G. Beta glycan binding protein and its role in shrimp immune response. Aquaculture 191, 13-21, 2000.

Vogel, C., Teichmann, S.A., Chothia, C. The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Development 130, 6317-6328, 2003.

Watson, F.L., Püttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., Kondo, M., Rebel, V.I., Schmucker, D. Extensive diversity of Igsuperfamily proteins in the immune system of insects. Science 309, 1874-1878, 2005.

Watthanasurorot, A., Jiravanichpaisal, P., Liu, H., Söderhäll, I., Söderhäll, K. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. PLoS Pathogen 7, e1002062, 2011.

Wickler, W. Ethological analysis of convergent adaptation. Annals of the New York Academy of Sciences 28, 65-69, 1973.

Witteveldt, J., Vlak, J.M., van Hulten, M.C. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish and Shellfish Immunology 16, 571-579, 2004.

Witteveldt, J., Cifuentes, C.C., Vlak, J.M., van Hulten, M.C. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. Journal of Virology 78, 2057-2061, 2004.

Witteveldt, J., Vlak, J.M., van Hulten, M.C. Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application ofthe viral envelope protein VP28. Diseases of Aquatic Organisms 70, 167-170, 2006.

Woof, J. and Burton, D. Human antibody-Fc receptor interactions illuminated by crystal structures. Nature Reviews Immunology 4, 89-99, 2004.

Wu, J.L., Nishioka, T., Mori, K., Nishizawa, T., Muroga, K. Time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish and Shellfish Immunology 13, 391-403, 2002.

Yamakawa, K., Huot, Y.K., Haendelt, M.A., Hubert, R., Chen, X.N., Lyons, G.E., Korenberg, J.R. DSCAM: A novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics 7, 227-237, 1998.

Yu, H.H., Yang, J.S., Wang, J., Huang, Y., Lee, T. Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. The Journal of Neuroscience 29, 1904-1914, 2009.

Zhang, S.M., Adema, C.M., Kepler, T.B., Loker, E.S. Diversification of ig superfamily genes in an invertebrate. Science 305, 251-254, 2004.

Zhang, Y.A, Salinas, I., Li, J., Parra, D., Bjork, S., Xu, Z., LaPatra, S.E., Bartholomew, J., Sunyer, J.O. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nature Immunology 11, 827-835, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊