跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郡庭
研究生(外文):Jyun-TingLin
論文名稱:4G通訊系統同頻干擾分析
論文名稱(外文):Co-channel Interference Analysis for 4G Wireless Communication Systems
指導教授:陳文字陳文字引用關係
指導教授(外文):Wen-Tzu Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:交通管理科學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:69
中文關鍵詞:同頻干擾長程演進技術全球互通微波存取部份頻率重用覆蓋縮減
外文關鍵詞:Co-channel interference (CCI)IEEE 802.16mLTEfractional frequency reusecoverage reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分析同頻干擾對第四代無線行動通訊系統(4G)的影響,建立同頻干擾的下鏈與上鏈分析模型,並分析同頻干擾對3GPP長程演進技術(LTE release 10)與IEEE全球互通微波存取技術(IEEE 802.16m, WiMAX)的影響。
為了提高細胞邊緣用戶的傳輸速率,部分頻率重用技術常被運用在通訊系統的建置規劃中,這樣的配置方式可以有效平衡系統容量與用戶資源分配公平性間的差異。本研究在同頻干擾的下鏈分析中,將用戶採隨機均勻方式散佈於細胞覆蓋範圍內,透過計算訊號雜訊干擾比(SINR)求得平均傳輸速率,據以模擬分析並比較不同部分頻率重用方式在不同的佈建環境下,對用戶傳輸效能的影響。結果顯示本研究提出的兩種部分頻率重用方式可以有效提高細胞邊緣用戶的傳輸效能。
針對4G通訊系統上鏈傳輸,本研究發展評估模式以分析同頻干擾對細胞覆蓋半徑的影響。判斷上鏈通訊是否能維持的基準,是用戶在傳輸時是否具有足夠發射功率,以滿足基地台對於最低訊號雜訊干擾比的要求;距離基地台愈遠的用戶理論上需要發射的功率也愈大。模擬的結果指出同頻干擾會使細胞覆蓋範圍顯著的縮小,特別是當用戶需要更多頻譜資源以進行高速傳輸時,影響的程度更是加劇。
本研究在上鏈與下鏈的分析模式中,用戶所在地點均為隨機,對於訊號傳輸衰減模型均有考慮遮蔽的效果,另在訊號接收端均有將噪音指數納入計算。所建立的模型可以分析同頻干擾對於LTE-A與IEEE 802.16m通訊系統的影響。
This study analyzes the impacts of co-channel interference (CCI) on 4G wireless communication systems. Both downlink and uplink CCI analysis models are developed to estimate the influences of CCI on system performance.
To improve the throughput performance of cell-edge users, the fractional frequency reuse (FFR) technique has been commonly used in the deployment of wireless broadband networks for balancing cell capacity and user fairness. In the downlink simulation analysis, two FFR schemes are proposed to improve the performance on user and system throughput. Mobile users are randomly distributed to cell coverage, and the signal-to-interference-plus-noise ratio (SINRs) of mobile users are calculated. Average throughput is adopted to evaluate the performance of FFR schemes. The results indicate that the proposed methods can enhance edge user throughput.
In the uplink analysis, a model is developed for estimating the impacts of CCI on cell coverage. The method is based on the SINR requirement that each mobile user transmit enough power to satisfy a minimum SINR. The simulation results indicate that CCI can cause significant reduction in cell coverage, especially when the users employ more subchannels for high-speed data transmission services.
The shadow fading propagation model and user random locations are taken into consideration for both uplink and downlink analysis models. The developed model can be used to analyze CCI in Long Term Evolution and IEEE 802.16m networks.
摘 要 i
ABSTRACT ii
ACKNOWLEDGE iii
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
NOMENCLATURE x
CHAPTER ONE: INTRODUCTION 1
1.1 Study Background and Motivation 1
1.2 Objectives of the Study 2
1.3 Scope of the Study 3
1.4 Organization of the Study 3
CHAPTER TWO: LITERATURE REVIEW 5
2.1 4G Wireless Communication Systems 5
2.2 Interference Analysis and Mitigation Technique 12
2.3 System Performance Analysis 15
CHAPTER THREE: SYSTEM MODEL 17
3.1 Co-channel Interference Power 17
3.2 Antenna Radiation Pattern 18
3.3 The Downlink Co-channel Interference Analysis Model 20
3.4 The Uplink Co-channel Interference Analysis Model 24
CHAPTER FOUR: NUMERICAL RESULT 30
4.1 The FFR Schemes Analysis in Downlink CCI 33
4.2 The Cell Coverage Analysis in Uplink CCI 51
CHAPTER FIVE: CONCLUSIONS 61
5.1 Conclusions 61
5.2 Limitations and Suggestions for Future Research 63
BIBLIOGRAPHY 64
LIST OF ACRONYMS 68

[1] F. Wang, A. Ghosh, C. Sankaran, P. J. Fleming, F. Hsieh, and S. J. Benes, “Mobile WiMAX Systems: performance and evolution, IEEE Commun. Mag., pp. 41-49, Oct. 2008.
[2] IEEE std 802.16-2009, Part 16: Air interface for broadband wireless access systems, May 2009.
[3] IEEE std 802.16m-2011, Part 16: Air interface for broadband wireless access systems, May 2011.
[4] 3GPP TR 36.814, Further advancements for E-UTRA physical layer aspects (release 9), 2010.
[5] 3GPP TR 36.913, Requirements for further advancements for Evolved Universal Terrestrial Radio Access (release 10), 2011.
[6] H. Holma and A. Toskala, LTE for UMTS OFDMA and SC-FDMA Based Radio Access, Chippenham, UK, John Wiley & Son, 2009.
[7] A. Ghosh, P. Patasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-Advanced: Next-Generation Wireless Broadband Technology, IEEE Wireless Commun., vol.17, no. 3, pp.10-22, Jun. 2010.
[8] W.-T. Chen and J.-T. Lin, “Analysis of the Impacts of Uplink Co-Channel Interference on Cell Coverage in an IEEE 802.16m System, IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2208-2215, Jun. 2014.
[9] H. Haas, V. D. Nguyen, P. Omiyi, N. Nedev, and G. Auer, “Interference aware medium access in cellular OFDMA/TDD networks, in Proc. IEEE ICC, Jul. 2006, pp. 1778-1783.
[10] N. Himayat, S. Yalwar, A. Rao, and R. Soni, “Interference management for 4G cellular standards, IEEE Commun. Mag., pp. 86-92, Aug. 2010.
[11] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks, IEEE Commun. Mag., vol. 47, no. 4, pp. 74-81, Apr. 2009.
[12] S. J. Kao and H. L. Wang, “Dynamic Orthogonal Frequency Division Multiple Access resource management for downlink interference avoidance in two-tier networks, International Journal of Communication Systems 2013; DOI: 10.1002/dac.2668.
[13] IST-4-027756 WINNER II deliverable D4.7.2, “Interference avoidance concepts, Jun. 2007.
[14] S. H. Ali and C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks, IEEE Trans. Wireless Commun., vol. 8, no. 8, pp.4286-4295, Aug. 2009.
[15] T. Novlan, J. G. Andrews, I. Sohn, R. K. Ganti, and A. Ghosh, “Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink, IEEE Global Telecomm. Conf. CLOBECOM, Miami, Florida, USA, Dec. 2010, pp.1-5.
[16] 3GPP TR 36.913, Requirements for further advancements for Evolved Universal Terrestrial Radio Access (release 10), 2012.
[17] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, “LTE: the evolution of mobile broadband, IEEE Commun. Mag., vol. 47, no. 4, pp. 44–51, Apr. 2009.
[18] A. Kumar, Y. Liu, J. Sengupta, and Divya, “Evolution of mobile wireless communication networks: 1G to 4G. International Journal of electronics & communication technology (IJECT), vol. 1, issue 1, pp. 68-72, Dec. 2010.
[19] M. Kottkamp, A. Roessler, and J. Schlienz, “LTE-Advanced technology introduction, Rohde & Schwarz, 1MA169_3E, 2012.
[20] M. Müller, “IEEE 802.16m technology introduction, Rohde & Schwarz, 1MA167_3E, 2010.
[21] S. Ahmadi, Mobile WiMAX, Academic Press, USA, 2011.
[22] T. Keller, L. Hanzo, “Adaptive multicarrier modulation: A convenient framework for time-frequency processing in wieless communications, in Proc. of the IEEE, vol. 8, issue 5, May 2000, pp. 611-640.
[23] M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review, in Proc. Of the IEEE, vol. 95, issue 7, Jul. 2007, pp. 1394-1427.
[24] R. V. Nee and R. Prasad, OFDM for wireless multimedia communications, Boston: Artech House, 2000.
[25] S-E. Elayoubi, O. B. Haddada, and B. Fourestié, “Performance evaluation of frequency planning schemes in OFDMA-based networks, IEEE Trans. Wireless Commun., vol.7, no. 5, pp. 1623-1633, May 2008.
[26] A. E. Leu, B. L. Mark, and M. A. McHenry, “A framework for cognitive WiMAX with frequency agility, in Proc. of the IEEE, vol. 97, no. 4, Apr. 2009, pp. 755-773.
[27] I. C. Wong and B. L. Evans, “Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic rates, IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 962-971, Mar. 2008.
[28] J. G. Andrews, A. Ghosh, and Muhamed, Fundamentals of WiMAX: understanding broadband wireless networking, Englewood-Cliffs, NJ, Prentice-Hall, 2007.
[29] Agilent Technologies, “Introducing LTE-Advanced, 5990-6706EN, 2011.
[30] G. Fodor, A. Rácz, N. Reider, and A. Temesváry, “Architecture and Protocol Support for Radio Resource Management (RRM), in Long Term Evolution : 3GPP LTE radio and cellular technology, B. Furht and S. A. Ahson, Eds. Taylor & Francis Group, 2009,ch. 4, p. 104.
[31] Jr. L. J. Cimini, “ Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, IEEE Trans. Commun., vol 33, no. 7, pp. 665-675, Jul. 1985.
[32] Y. G. El-Jaafreh, “Co-channel and adjacent channel interference calculations in cellular communications systems, Journal of King Saud University, engineering Sciences, vol. 12, no. 1, pp. 153-168, 2000.
[33] W. T. Chen, “Adjacent channel interference in a macrocell/microcell WCDMA system, Wireless Communications and Mobile Computing, vol. 9, no. 2, pp. 187-195, Feb. 2009.
[34] M. Coupechoux and J.-M. Kelif, “How to set the fractional power control compensation factor in LTE, Sarnoff Symposium, 2011 34th IEEE, May 2011, pp.1-5.
[35] A. Simonssion and A. Furuskär, “Uplink power control in LTE-overview and performance, Vehicular Technology Conference, Sep. 2008, pp.1-5.
[36] F. Hendessi, A. U. Sheikh, and R. M. Hafez, “Co-channel and adjacent channel interference in wireless cellular communications, Wireless Personal Communications, vol.12, pp. 239-253, Feb. 2000.
[37] Z. Xu, G. Y. Li, C. Yang, and X. Zhu, “Throughput and optimal threshold for FFR schemes in OFDMA cellular networks, IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2776-2785, Aug. 2012.
[38] M. Assaad, “Optimal fractional frequency reuse (FFR) in multicellular OFDMA system, IEEE 68th Vehicular Technology Conf. VCT 2008-Fall, Calgary, AB, Canada, Sep. 2008, pp. 1-5.
[39] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m Evaluation Methodology Document (EMD), Jan. 2009.
[40] 3GPP TR 136.942, Radio frequency system scenarios (release 10), 2012.
[41] D. K. Kim and D. K. Sung, “Capacity estimation for a multicode CDMA system with SIR-based power control, IEEE Trans. Veh., Technol., vol. 50, no. 3, pp. 701-710, May. 2001.
[42] T. D. Novlan, R. K. Ganti, A. Ghosh, and J. G. Andrews, “Analytical Evaluation of fractional frequency reuse for OFDMA cellular networks, IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4294-4305, Dec. 2011.
[43] M. Rahman and H. Yanikomeroglu, “Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination, IEEE Trans. on Wireless Commun., vol. 9, no. 4, pp.1414-1425, Apr. 2010.
[44] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m System Description Document (SDD), Sep. 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top