跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許哲維
研究生(外文):CHE-WEIHSU
論文名稱:非熱含氮氣之氬氣微電漿診斷與此電漿於改質培養基之衍生物評估
論文名稱(外文):Non-thermal N2/Ar micro-plasma diagnosis and estimation of its derivative species in a modified culture medium
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:60
中文關鍵詞:微電漿物種組成環境物種活性物種照射時間
外文關鍵詞:micro-plasma compositionenvironment speciesreactive speciesexposure time.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
電漿醫學的發展在近幾年來有著穩定的成長,在醫學領域的應用上,電漿裝置的型式多為大氣常壓型、非熱型與微小化的微型電漿裝置。此外微電漿於處理目標的效應主要來自於存活期長的活性物種,而在組織中會有處理耐受時間的問題,因此診斷電漿裝置的物種組成、照射環境與組織反應對於生物安全性的探討是十分重要的,對於處理物與處理環境也可以產生較低的負擔。
  本研究中,將使用電漿噴流型式之氬氣與混和氮氣的微電漿裝置,並藉由調整電漿參數來控制電漿物種組成,於探討曝曬環境的議題上將以通用的國際法規做為準則,而為了模擬組織的反應機制,會使用緩衝溶液與細胞培養液來驗證硝酸鹽類與反應性氧化物種的組成。
  研究成果呈現出電漿物種的組成,包含(1)紫外光:紫外光譜的不同波段的強度,隨著電漿噴嘴出口與目標物距離增加,紫外光強度隨之遞減,而在距離6 mm的情況下強度將會接近背景值,(2)一氧化氮與臭氧:一氧化氮由於濃度低於量測極限所以無法得知,而臭氧則可以利用累積的方式量測,然而其數值能遠低於安全上限,(3)液相產物:亞硝酸鹽類與反應性氧化物種隨著處理時間增加,其濃度都有增加的趨勢,然而在長時間的處理過程,皆高於我們正常使用的時間參數。
藉由調整電漿參數與處理時間,我們現有使用的微電漿系統可認定為安全且於組織是可忍受的。

“Plasma medicine” has been growingly developed in recent years. For medical applications, a plasma device is usually atmospheric, non-thermal, and miniature as a type of micro-plasmas. Thus, the effect of micro-plasma with a target substance is mostly correlated with relatively long-lived species that may induce an interaction within a tissue-tolerable duration. As the result, the diagnoses of plasma composition, exposed environment, and possibly induced tissue-response are important to clarify the bio-safety issue, though micro-plasmas are known to be weakly loaded to its surrounding and a treated substance. In this study, a jet-type Ar and Ar/N2 micro-plasmas with suggested parameters (with a controlled plasma composition) were utilized, followed by examining the exposed environment, based on general regulations. The induced tissue-response was simulated by loading on a buffer solution and medium, followed by verifying nitrite and reactive oxygen species in liquid. In summary, plasma composition from the suggested device contains (1) UVA, B, and C: the intensities are decreased with the working distance between plasma nozzle and a target substance (e.g., at the working distance of 6 mm, the intensities are close to their background values), (2) the generated nitric oxide, and ozone species: the former ones are not measurable, however, the latter can be accumulated as the exposure time is extended (but still far below the safety range), and (3) the generated species in liquid: nitrite and reactive oxygen species are increased with plasma exposure time, however, it is quite out of the usual plasma exposure time range. Consequently, by adjusting plasma composition and controlling the required exposure time, the currently applied micro-plasma treatment is presumably tissue-tolerable.
摘要 I
Extended Abstract II
誌謝 VIII
目錄 X
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 2
1.3. 文獻回顧 3
1.3.1. 非熱微電漿形式 3
1.3.2. 非熱微電漿物種量化與診斷 5
1.3.3. 不同氣體添加影響電漿物種組成 9
1.3.4. 電漿物種誘發改質培養液ROS生成 11
1.4. 研究目的 12
第二章 理論基礎 14
2.1. 電漿 14
2.1.1. 電漿簡介 14
2.1.2. 大氣電漿 15
2.1.3. 微電漿 16
2.2. 電漿物種機制探討與規範 20
2.3. 細胞培養基 24
第三章 實驗方法與材料 26
3.1. 實驗設計與流程 26
3.2. 實驗材料與製備 27
3.2.1. 試劑與藥品 27
3.2.2. 大氣微電漿裝置 27
3.3.電漿分析儀器 29
3.3.1. 光學光譜分析儀 30
3.3.2. 螢光式光纖溫度計 31
3.3.3. 氣體逸漏警報器 31
3.3.4. 紫外光譜強度計 32
3.4.液相分析儀器 32
3.4.1. 酸鹼度計 32
3.4.2. 亞硝酸鹽定量法 33
3.4.3. 氧活性物種ROS量測 34
第四章 非熱微電漿物種診斷與安全性分析 35
4.1. 非熱微電漿系統溫度量測 35
4.2. 非熱微電漿系統之特性光譜解析 - 光學放射光譜儀 37
4.2.1. 電漿全區段光譜掃描分析 38
4.2.2. 電漿中特定物種之光譜掃描與半定量分析 39
4.3. 非熱微電漿系統紫外光譜曝射強度分析 41
4.4. 微電漿系統反應性氣體生成濃度分析 43
第五章 微電漿物種與溶液反應之RONS濃度變化 47
5.1. 溶液中酸鹼度變化 47
5.2. 溶液中氧化性物種濃度對時間的相依性 48
5.3. 溶液中亞硝酸鹽濃度對時間的相依性 50
5.4. 非熱微電漿物種對液相層生成硝酸鹽類與氧化性物種之可能機轉 51
結論 53
未來展望 55
參考文獻 56

[1] Th. von Woedtkea, S. Reutera, K. Masura and K.-D. Weltmanna, Plasmas for medicine, Physics Reports, Vol. 530, Issue 4, pp.291~320, 2013
[2] K. D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke,and T. von Woedtke, Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation, Contributions to Plasma Physics, Vol. 49, pp. 631~640, 2009.
[3] E. Novo and M. Parola, Redox mechanisms in hepatic chronic wound healing and fibrogenesis, Fibrogenesis & Tissue Repair, Vol. 1, pp. 5, 2008.
[4] S. Kalghatgi, G. Friedman, A. Fridman, and A. M. Clyne, Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release, Annals of Biomedical Engineering, Vol. 38, pp. 748~757, 2010.
[5]I. Langmuir, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, Journal of Physics D: Applied Physics, Vol. 45, pp. 627~637, 2012.
[6]I. Langmuir, Oscillations in ionized gases, Proceedings of the National Academy of Sciences, Vol. 14, pp. 627-637, 1928.
[7]A. Sch¨utze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Transactios on plasma science, Vol. 26, pp. 1685~1694, 1998.
[8]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, pp. 2~30, 2006.
[9]W. K. Huang, C. C. Weng, J. D. Liao, Y. C. Wang, and S. F. Chuang, Capillary-tube-based micro-plasma system for disinfecting dental biofilm, International Journal of Radiation Biology, Vol. 89, pp. 364~370, 2013.
[10] D. B. Graves, The emerging role of reactive oxygen and nitrogen speciesin redox biology and some implications for plasma applications to medicine and biology, Journey of Physis D: Applied Physics, Vol. 45, 2012.
[11] F. Iza, G. J. Kim, S. M. Lee, J. K. LEE, J. L. Walsh, and Y. T. Zhang., Microplasma: Source, particle kinetics, and biomedical applications, Plasma Processes and Polymers, Vol. 5, 322~344, 2008.
[12] S. Blackert, B. Haertel, K. Wende, T. V. Woedtke, and U. Lindequist, Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT) , Journal of Dermatological Science, Vol. 70, 173~181, 2013.
[13] K. Oehmigen, M. Ha¨hnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann and Th. von Woedtke, The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids, Plasma Processes and Polymers, Vol. 7, 250~257, 2010.
[14] M. Zenker, Argon plasma coagulation, GMS Krankenhaushygiene Interdisziplinär, Vol. 3, 2008.
[15] M. K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi and F. Massines,        Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture, Journey of Physis D: Applied Physics, Vol. 39, pp. 3494~3507, 2006.
[16] J. H. Rabe, A. J. Mamelak, P. J. S. McElgunn, W. L. Morison, and D. N. Sauder,    Photoaging: mechanisms and repair, Journal of the American Academy of Dermatology, Vol. 55, pp. 1~19, 2006
[17] Opinion on biological effects of ultraviolet radiation relevant to health with particular reference to sunbeds for cosmetic purposes, European Commission Health & Consumer Protection Directorate-General, 2006.
[18] ICNIRP Guidelines on limits of exposure to ultraviolet radiation of wavelength between 100 nm and 400 nm, Health Physics, Vol. 87, pp.171~186, 2004
[19] S. Kühn, N. Bibinov, R. Gesche and P. Awakowicz, Non-thermal atmospheric   pressure HF plasma source: generation of nitric oxide and ozone for bio-medical  applications, Plasma sources science & technology, Vol. 19, pp. 13~15, 2010.
[20] A. B. Shekhtera, V. A. Serezhenkovb, T. G. Rudenkoa, A. V. Pekshevc and A. F.  Vaninb, Beneficial effect of gaseous nitric oxide on the healing of skin   wounds, Nitric Oxide, Vol. 12, pp.210~219, 2005.

[21] V. Bocci, Biological and clinical effects of ozone. Has ozone therapy a future in  medicine? British journal of biomedical science, Vol. 56, pp. 270~279, 1999.
[22] M. Griggs, Absorption coefficients of ozone in the ultraviolet and visible regions, The Journal of Chemical Physics, Vol. 49, pp. 857, 1968.
[23] S. V. Pancheshnyi, S. M. Starikovskaia and A.Yu. Starikovskii, Collisionaldeactivation of N2(C , v=0, 1, 2, 3) states by N2, O2, H2 and H2O molecules, Chemical Physics, Vol. 262, pp. 349~357, 2000.
[24] G. Fridman, A. D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V. N. Vasilets, H. Ayan and G. Friedman, Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria , Plasma Processes and Polymers, Vol. 4, 370~375, 2007.
[25] Morss, A. S., and E. R. Edelman, Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability, The Journal of Biological Chemistry, Vol. 282, pp. 14635~14644, 2007.
[26] C. J. Danpure, Lactate dehydrogenase and cell injury, Cell biochemistry and function, Vol. 2, pp. 144~148, 2004.
[27]K. H. Becker, K. H. Schoenbach, and J. G. Eden, Microplasmas and applications, Journal of Physics D: Applied Physics, Vol. 39, pp. 55~70, 2006.
[28]K. H. Becker, N. M. Masoud, K. E. Martus, and K. H. Schoenbach, Electron-driven processes in high-pressure plasmas, The European Physical Journal D, Vol. 35, pp. 279~297, 2005.
[29]A. L. Garner, Cathode spot motion in an oblique magnetic field, Applied Physics Letters, Vol. 92, pp. 011505, 2008.
[30]Y. H. Lee, C. H. Yi, M. J. Chung, and G. Y. Yeom, Characteristics of He/O2 atmospheric pressure glow discharge and its dry etching properties of organic materials, Surface and Coatings Technology, vol. 146~147, pp. 474~479, 2001.
[31] A. R. Pombinho, V. Laizé, D. M. Molha, S. M. P. Marques and M. L. Cancela, Development of two bone-derived cell lines from the marine teleost Sparus aurata; evidence for extracellular matrix mineralization and cell-type-specific expression of matrix Gla protein and osteocalcin, Cell and Tissue Research, Vol. 315, pp. 393~406, 2004.
[32] L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, Analytical Biochemistry, Vol. 126, pp. 131~138, 1982.
[33] P. C. Ford, D. A. Winkb and D. M. Stanbury, Autoxidation kinetics of aqueous nitric oxide, Federation of European Biochemical Societies, Vol. 326, NO. 1,2,3, 1993.
[34] C. Torres, P. G. Reyes, F. Castillo and H. Martínez, Paschen law for argon glow discharge , Journal of Physics: Conference, Series. 370, 2012.
[35] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, Wiley Interscience, Hoboken, NJ: Wiley, 2005.
[36] Occupational Safety and Health Standards, Toxic and Hazardous Substances, 2006.
[37] M.G. Kong, G Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J. L. Zimmermann, Plasma medicine: an introductory review, New journal of physics, Vol. 11, pp. 35, 2009.
[38] E. Stoffels, Y. Aranda Gonzalvo, T. D. Whitmore, D. L. Seymour and J. A. Rees, Mass spectrometric detection of short-living radicals produced by a plasma needle, Plasma Sources Science And Technology, Vol. 16, pp.549~556, 2007
[39]林天送, 一氧化氮醫學, 科學發展, Vol. 461, pp. 72~75, 2011.
[40]J. M. Wong and T. R. Billiar, Regulation and function of inducible nitric oxide synthase during sepsis and acute inflammation, Advances in Pharmacology, Vol. 34, I. Louis and M. Ferid, Eds, ed: Academic Press, 1995, pp. 155~170.
[41]H. Zhu, B. Ka, and F. Murad, Nitric oxide accelerates the recovery from burn wounds, World Journal of Surgery, Vol. 31, pp. 624~631, 2007.
[42]B. B. Childress and J. K. Stechmiller, Role of nitric oxide in wound healing, Biological Research For Nursing, Vol. 4, pp. 5~15, 2002.
[43] Code of Federal Regulations Title 21, Sec. 801.415 maximum acceptable level of ozone, Food And Drug Administration, 2013

[44]R. Huo, Q. Ma, J. J. Wu, K. Chin-Nuke, Y. Jing, J. Chen, M. E. Miyar, S. C. Davis, and J. Li, Noninvasive electromagnetic fields on keratinocyte growth and migration, Journal of Surgical Research, Vol. 162, pp. 299~307, 2010.
[45] 郭緒東與張天長, 外傷傷口癒合與慢性傷口, 家庭醫學與基層醫療, Vol. 27, pp. 414~421, 2012.
[46] Icnirp guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields, Health physics, Vol. 74, pp. 494~522, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top