|
[1]A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, M.J. Thun, Cancer statistics, 2009. CA Cancer J Clin 59 (2009) 225-249. [2]A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J Clin 61 (2011) 69-90. [3]D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics, 2002. CA: a cancer journal for clinicians 55 (2005) 74-108. [4]B.F. Parkin DM, Ferlay J, Pisani P., Global cancer statistics, 2002. CA Cancer J Clin 55 (2005) 74-108. [5]S.R. Jemal A, Ward E, Hao Y, Xu J, Thun MJ., Cancer statistics, 2009. CA Cancer J Clin. 59 (2009) 225-249. [6]W.S. Casiglia J, A comprehensive review of oral cancer. Gen Dent. 49 (2001) 72-82. [7]O.T. Hivatal., Epidemiology of oral cancer. Fogorv Sz. 100 (2007) 47-52. [8]R.K. Muwonge R, Sankila R, Thara S, Thomas G, Vinoda J, Sankaranarayanan R., Role of tobacco smoking, chewing and alcohol drinking in the risk of oral cancer in Trivandrum, India: a nested case-control design using incident cancer cases. Oral Oncol. 44 (2008) 446-454. [9]statistics of cancer, in, Health of Department, Executive Yuan, Taiwain, 2009. [10]T.Y. Seiwert, E.E. Cohen, State-of-the-art management of locally advanced head and neck cancer. Br J Cancer 92 (2005) 1341-1348. [11]A. Zini, R. Czerninski, H.D. Sgan-Cohen, Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 39 (2010) 299-305. [12]C.H. Peng, C.T. Liao, S.C. Peng, Y.J. Chen, A.J. Cheng, J.L. Juang, C.Y. Tsai, T.C. Chen, Y.J. Chuang, C.Y. Tang, W.P. Hsieh, T.C. Yen, A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PLoS One 6 (2011) e23452. [13]D.S. Hsu, S.Y. Chang, C.J. Liu, C.H. Tzeng, K.J. Wu, J.Y. Kao, M.H. Yang, Identification of increased NBS1 expression as a prognostic marker of squamous cell carcinoma of the oral cavity. Cancer Sci 101 (2010) 1029-1037. [14]M. Yamatoji, A. Kasamatsu, Y. Kouzu, H. Koike, Y. Sakamoto, K. Ogawara, M. Shiiba, H. Tanzawa, K. Uzawa, Dermatopontin: a potential predictor for metastasis of human oral cancer. Int J Cancer 130 (2012) 2903-2911. [15]R.D. Riley, W. Sauerbrei, D.G. Altman, Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond. British journal of cancer 100 (2009) 1219-1229. [16]T.M. Soland, I.J. Brusevold, Prognostic molecular markers in cancer - quo vadis? Histopathology 63 (2013) 297-308. [17]D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144 (2011) 646-674. [18]S. Mallett, A. Timmer, W. Sauerbrei, D.G. Altman, Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines. British journal of cancer 102 (2010) 173-180. [19]I. Malanchi, Tumour cells coerce host tissue to cancer spread. BoneKEy reports 2 (2013) 371. [20]L. Mathot, J. Stenninger, Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer science 103 (2012) 626-631. [21]M.R. Fein, M. Egeblad, Caught in the act: revealing the metastatic process by live imaging. Disease models & mechanisms 6 (2013) 580-593. [22]R. Kannagi, Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconjugate journal 14 (1997) 577-584. [23]Y.J. Kim, A. Varki, Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate journal 14 (1997) 569-576. [24]I. Hauselmann, L. Borsig, Altered Tumor-Cell Glycosylation Promotes Metastasis. Frontiers in oncology 4 (2014) 28. [25]V.P. Terranova, E.S. Hujanen, D.M. Loeb, G.R. Martin, L. Thornburg, V. Glushko, Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci U S A 83 (1986) 465-469. [26]A. Albini, Y. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski, R.N. McEwan, A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer research 47 (1987) 3239-3245. [27]Y.W. Chu, P.C. Yang, S.C. Yang, Y.C. Shyu, M.J. Hendrix, R. Wu, C.W. Wu, Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology 17 (1997) 353-360. [28]W. Zheng, P. Rosenstiel, K. Huse, C. Sina, R. Valentonyte, N. Mah, L. Zeitlmann, J. Grosse, N. Ruf, P. Nurnberg, C.M. Costello, C. Onnie, C. Mathew, M. Platzer, S. Schreiber, J. Hampe, Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes and immunity 7 (2006) 11-18. [29]V. Brychtova, B. Vojtesek, R. Hrstka, Anterior gradient 2: a novel player in tumor cell biology. Cancer letters 304 (2011) 1-7. [30]K. Kani, P.D. Malihi, Y. Jiang, H. Wang, Y. Wang, D.L. Ruderman, D.B. Agus, P. Mallick, M.E. Gross, Anterior gradient 2 (AGR2): Blood-based biomarker elevated in metastatic prostate cancer associated with the neuroendocrine phenotype. Prostate (2012). [31]E. Pohler, A.L. Craig, J. Cotton, L. Lawrie, J.F. Dillon, P. Ross, N. Kernohan, T.R. Hupp, The Barrett's antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Molecular & cellular proteomics : MCP 3 (2004) 534-547. [32]Z. Wang, Y. Hao, A.W. Lowe, The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res 68 (2008) 492-497. [33]K.E. Vanderlaag, S. Hudak, L. Bald, L. Fayadat-Dilman, M. Sathe, J. Grein, M.J. Janatpour, Anterior gradient-2 plays a critical role in breast cancer cell growth and survival by modulating cyclin D1, estrogen receptor-alpha and survivin. Breast Cancer Res 12 (2010) R32. [34]K.S. Kornfeld R, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 54 (1985) 631-664. [35]P.-K. J., Methods in Enzymology: O-Glycosylation of Proteins. Methods Enzymol 405 (2005) 139-171. [36]F.V. Morelle W, Chirat F, Michalski JC., Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol Biol. 534 (2009) 5-21. [37]G.W. Hart, M.P. Housley, C. Slawson, Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446 (2007) 1017-1022. [38]P. Van den Steen, P.M. Rudd, R.A. Dwek, G. Opdenakker, Concepts and principles of O-linked glycosylation. Critical reviews in biochemistry and molecular biology 33 (1998) 151-208. [39]H.C. Grebner EE, Neufeld EF., Glycosylation of serine residues by a uridine diphosphate-xylose: protein xylosyltransferase from mouse mastocytoma. Arch Biochem Biophys. 116 (1966) 391-398. [40]I.E. Stanley P, Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J. 9 (1995) 1436-1444. [41]L.B. Kirmiz C, An HJ, Clowers BH, Chew HK, Lam KS, Ferrige A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S. , A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics. 6 (2007) 43-55. [42]A.H. de Leoz ML, Kronewitter S, Kim J, Beecroft S, Vinall R, Miyamoto S, de Vere White R, Lam KS, Lebrilla C. , Glycomic approach for potential biomarkers on prostate cancer: profiling of N-linked glycans in human sera and pRNS cell lines. Dis Markers. 25 (2008) 243-258. [43]L.C. An HJ, A glycomics approach to the discovery of potential cancer biomarkers. Methods Mol Biol. 600 (2010) 199-213. [44]J.W. Dennis, M. Granovsky, C.E. Warren, Glycoprotein glycosylation and cancer progression. Biochimica et biophysica acta 1473 (1999) 21-34. [45]E.J. Fuster MM, The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. Nat Rev Cancer. 5 (2005) 526-542. [46]K. Biskup, E.I. Braicu, J. Sehouli, C. Fotopoulou, R. Tauber, M. Berger, V. Blanchard, Serum glycome profiling: a biomarker for diagnosis of ovarian cancer. Journal of proteome research 12 (2013) 4056-4063. [47]I. Brockhausen, S. Narasimhan, H. Schachter, The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70 (1988) 1521-1533. [48]T. Handerson, R. Camp, M. Harigopal, D. Rimm, J. Pawelek, Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 11 (2005) 2969-2973. [49]D.J. Becker, J.B. Lowe, Fucose: biosynthesis and biological function in mammals. Glycobiology 13 (2003) 41R-53R. [50]B. Ma, J.L. Simala-Grant, D.E. Taylor, Fucosylation in prokaryotes and eukaryotes. Glycobiology 16 (2006) 158R-184R. [51]E. Miyoshi, K. Moriwaki, T. Nakagawa, Biological function of fucosylation in cancer biology. Journal of biochemistry 143 (2008) 725-729. [52]K.Y. Takahashi M, Ohtsubo K, Taniguchi N. , Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res. 344 (2009) 1387-1390. [53]Y.H. Matsumoto K, Arao T, Maegawa M, Tanaka K, Fujita Y, Shimizu C, Hanafusa T, Fujiwara Y, Nishio K., N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci. 99 (2008) 1611-1617. [54]G.J. Wang X, Ihara H, Miyoshi E, Honke K, Taniguchi N., Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem. 281 (2006) 2572-2577. [55]T.M. Osumi D, Miyoshi E, Yokoe S, Lee SH, Noda K, Nakamori S, Gu J, Ikeda Y, Kuroki Y, Sengoku K, Ishikawa M, Taniguchi N. , Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci. 100 (2009) 888-895. [56]F. Momose, T. Araida, A. Negishi, H. Ichijo, S. Shioda, S. Sasaki, Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 18 (1989) 391-395. [57]T. Matsui, T. Ota, Y. Ueda, M. Tanino, S. Odashima, Isolation of a highly metastatic cell line to lymph node in human oral squamous cell carcinoma by orthotopic implantation in nude mice. Oral oncology 34 (1998) 253-256. [58]S. Azari, N. Ahmadi, M.J. Tehrani, F. Shokri, Profiling and authentication of human cell lines using short tandem repeat (STR) loci: Report from the National Cell Bank of Iran. Biologicals : journal of the International Association of Biological Standardization 35 (2007) 195-202. [59]R. Thompson, S. Zoppis, B. McCord, An overview of DNA typing methods for human identification: past, present, and future. Methods Mol Biol 830 (2012) 3-16. [60]C.J. Fregeau, R.M. Fourney, DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques 15 (1993) 100-119. [61]J.Y. Chen, Y.A. Tang, S.M. Huang, H.F. Juan, L.W. Wu, Y.C. Sun, S.C. Wang, K.W. Wu, G. Balraj, T.T. Chang, W.S. Li, H.C. Cheng, Y.C. Wang, A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res 71 (2011) 473-483. [62]T. Geback, M.M. Schulz, P. Koumoutsakos, M. Detmar, TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques 46 (2009) 265-274. [63]P. Zengel, A. Nguyen-Hoang, C. Schildhammer, R. Zantl, V. Kahl, E. Horn, mu-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC cell biology 12 (2011) 21. [64]M. Gassmann, B. Grenacher, B. Rohde, J. Vogel, Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30 (2009) 1845-1855. [65]M.H. Wu, H.C. Hong, T.M. Hong, W.F. Chiang, Y.T. Jin, Y.L. Chen, Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 17 (2011) 1306-1316. [66]H. Komatsubara, M. Umeda, N. Oku, T. Komori, Establishment of in vivo metastasis model of human adenoid cystic carcinoma: detection of metastasis by PCR with human beta-globin gene. The Kobe journal of medical sciences 48 (2002) 145-152. [67]Y. Kariya, J. Gu, N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6 (2011) e27084. [68]S. Ahmadian, J. Barar, A.A. Saei, M.A. Fakhree, Y. Omidi, Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J Vis Exp (2009). [69]F. Scholle, K.M. Bendt, N. Raab-Traub, Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 74 (2000) 10681-10689. [70]H. Tateno, S. Nakamura-Tsuruta, J. Hirabayashi, Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19 (2009) 527-536. [71]D.C. Allred, J.M. Harvey, M. Berardo, G.M. Clark, Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 11 (1998) 155-168. [72]K.R. Choudhury, K.J. Yagle, P.E. Swanson, K.A. Krohn, J.G. Rajendran, A robust automated measure of average antibody staining in immunohistochemistry images. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 58 (2010) 95-107. [73]F.L. Greene, The American Joint Committee on Cancer: updating the strategies in cancer staging. Bulletin of the American College of Surgeons 87 (2002) 13-15. [74]A.L. Tarentino, C.M. Gomez, T.H. Plummer, Jr., Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24 (1985) 4665-4671. [75]Y.C. Liu, H.Y. Yen, C.Y. Chen, C.H. Chen, P.F. Cheng, Y.H. Juan, C.H. Chen, K.H. Khoo, C.J. Yu, P.C. Yang, T.L. Hsu, C.H. Wong, Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America 108 (2011) 11332-11337. [76]A. Dell, A.J. Reason, K.H. Khoo, M. Panico, R.A. McDowell, H.R. Morris, Mass spectrometry of carbohydrate-containing biopolymers. Methods in enzymology 230 (1994) 108-132. [77]N.P. Price, Permethylation linkage analysis techniques for residual carbohydrates. Applied biochemistry and biotechnology 148 (2008) 271-276. [78]Z. Lin, D.M. Lubman, Permethylated N-glycan analysis with mass spectrometry. Methods Mol Biol 1007 (2013) 289-300. [79]A. Ceroni, K. Maass, H. Geyer, R. Geyer, A. Dell, S.M. Haslam, GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. Journal of proteome research 7 (2008) 1650-1659. [80]M. Duda, A. Gasinska, E.L. Gregoraszczuk, Flow cytometric cell cycle analysis of two subpopulations of porcine granulosa cells. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 107 (1999) 203-207. [81]T.M. Clayton, J.P. Whitaker, R. Sparkes, P. Gill, Analysis and interpretation of mixed forensic stains using DNA STR profiling. Forensic science international 91 (1998) 55-70. [82]K. Yoshino, E. Iimura, K. Saijo, S. Iwase, K. Fukami, T. Ohno, Y. Obata, Y. Nakamura, Essential role for gene profiling analysis in the authentication of human cell lines. Human cell 19 (2006) 43-48. [83]H. Ihara, Y. Ikeda, S. Toma, X. Wang, T. Suzuki, J. Gu, E. Miyoshi, T. Tsukihara, K. Honke, A. Matsumoto, A. Nakagawa, N. Taniguchi, Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Glycobiology 17 (2007) 455-466. [84]D.L. Barraclough, A. Platt-Higgins, S. de Silva Rudland, R. Barraclough, J. Winstanley, C.R. West, P.S. Rudland, The metastasis-associated anterior gradient 2 protein is correlated with poor survival of breast cancer patients. The American journal of pathology 175 (2009) 1848-1857. [85]Y. Jing, Z. Han, S. Zhang, Y. Liu, L. Wei, Epithelial-Mesenchymal Transition in tumor microenvironment. Cell & bioscience 1 (2011) 29. [86]E.W. Thompson, D.F. Newgreen, D. Tarin, Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65 (2005) 5991-5995; discussion 5995. [87]L. Dumartin, H.J. Whiteman, M.E. Weeks, D. Hariharan, B. Dmitrovic, C.A. Iacobuzio-Donahue, T.A. Brentnall, M.P. Bronner, R.M. Feakins, J.F. Timms, C. Brennan, N.R. Lemoine, T. Crnogorac-Jurcevic, AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer research 71 (2011) 7091-7102. [88]Z.S. Wu, Q. Wu, X.D. Ding, H.Q. Wang, Y.X. Shen, S.Y. Fang, [Expression of a novel metastasis-inducing protein human anterior gradient-2 (AGR2) in breast cancer and its clinical and prognostic significance]. Zhonghua bing li xue za zhi Chinese journal of pathology 37 (2008) 109-113. [89]L. Sweeny, Z. Liu, B.D. Bush, Y. Hartman, T. Zhou, E.L. Rosenthal, CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma. Experimental cell research 318 (2012) 1788-1798. [90]A. Higa, A. Mulot, F. Delom, M. Bouchecareilh, D.T. Nguyen, D. Boismenu, M.J. Wise, E. Chevet, Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. The Journal of biological chemistry 286 (2011) 44855-44868. [91]K. Kani, P.D. Malihi, Y. Jiang, H. Wang, Y. Wang, D.L. Ruderman, D.B. Agus, P. Mallick, M.E. Gross, Anterior gradient 2 (AGR2): blood-based biomarker elevated in metastatic prostate cancer associated with the neuroendocrine phenotype. The Prostate 73 (2013) 306-315. [92]S. Darb-Esfahani, F. Fritzsche, G. Kristiansen, W. Weichert, J. Sehouli, I. Braicu, M. Dietel, C. Denkert, Anterior gradient protein 2 (AGR2) is an independent prognostic factor in ovarian high-grade serous carcinoma. Virchows Archiv : an international journal of pathology 461 (2012) 109-116. [93]F.R. Fritzsche, E. Dahl, A. Dankof, M. Burkhardt, S. Pahl, I. Petersen, M. Dietel, G. Kristiansen, Expression of AGR2 in non small cell lung cancer. Histology and histopathology 22 (2007) 703-708. [94]S.J. Ichwan, S. Yamada, P. Sumrejkanchanakij, E. Ibrahim-Auerkari, K. Eto, M.A. Ikeda, Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25 (2006) 1216-1224. [95]C.H. Liao, S.C. Yeh, Y.H. Huang, R.N. Chen, M.M. Tsai, W.J. Chen, H.C. Chi, P.J. Tai, C.J. Liao, S.M. Wu, W.L. Cheng, L.M. Pai, K.H. Lin, Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion. Endocr Relat Cancer 17 (2010) 99-111. [96]X. Qian, C. Li, B. Pang, M. Xue, J. Wang, J. Zhou, Spondin-2 (SPON2), a more prostate-cancer-specific diagnostic biomarker. PLoS One 7 (2012) e37225. [97]J. Zhou, C. Bi, L.L. Cheong, S. Mahara, S.C. Liu, K.G. Tay, T.L. Koh, Q. Yu, W.J. Chng, The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118 (2011) 2830-2839. [98]P.D. Rye, R.A. Walker, Analysis of glycoproteins released from benign and malignant human breast: changes in size and fucosylation with malignancy. European journal of cancer & clinical oncology 25 (1989) 65-72. [99]E. Gruszewska, L. Chrostek, [The alterations of glycosylation in malignant diseases]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 34 (2013) 58-61.
|