1.K. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode Multilayer Ceramic Capacitors: Past, Present and Future Perspectives, Jpn. J. Appl. Phys., 42, 1-15, (2003).
2.G. Arlt, D. Hennings, and G. With, “Dielectric Properties of Fine Grain Barium Titanate Ceramics, J. Appl. Phys., 58, [4], 1619-1625, 15 August, (1985).
3.A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, and Applications, Chapman and Hall, New York, (1990).
4.I. Sondi and E. Matijevic, “Homogeneous Precipitation by Enzyme-Catalyzed Reactions. 2. Strontium and Barium Carbonates, Chem. Mater., 15, 1322-1326, (2003).
5.F. Boschini, B. Robertz, A. Rulmont, and R. Cloots, “Preparation of Nanosized Barium Zirconate Powder by Thermal Decomposition of Urea in an Aqueous Solution Containing Barium and Zirconium, and by Calcination of the Precipitate, J. Eur. Ceram. Soc., 23, 3035-3042, (2003).
6.C. Beddie, C. E. Webster, and M. B. Hall, “Urea Decomposition Facilitated by a Urea Model Complex: a Theoretical Investigation, Roy. Soc. Chem., 3542-3551, (2005).
7.張哲源,以尿素-硝酸鋇沈澱之碳酸鋇披覆於二氧化鈦以合成鈦酸鋇之研究。國立成功大學資源工程研究所碩士論文(2006)8.W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate. J. Am. Ceram. Soc., 49 [1] 33-36 (1966).
9.K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis Jap. J. Appl. Phys., 48 [9] 09KC05-09KC05-4 (2009).
10.J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System, Jap. J. Appl. Phys., 46 [10B] 6999-7004 (2007).
11.Q. Feng, and C. J. McConville, “Weak-Beam Dark-Field Microscopy of Complex Stress States in X7R-Type BaTiO3 Dielectric Core–Shell Structures, J. Am. Ceram. Soc., 87 [10] 1945-1951 (2004).
12.Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics, J. Appl. Phys., 58 [4] 1619-1625 (1985).
13.M. H. Frey, and D. A. Payne, “Grain-size effect on structure and phase transformations for barium titanate, Ame. Phys. Soc., 54 [5] 3158-3168 (1996).
14.R. L. Coble, “Sintering Crystalline Solids : Ⅱ Experimental Test of Diffusion Models in Powder Compacts, J. Appl. Phys., 32, 793-799, 1961.
15.T.Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3, J. Am. Ceram. Soc., 83 [1], 107-12, 2000.
16.Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3, Jpn. J. Appl. Phys., 43, 2004, 5373-5377.
17.D. E. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2, J. Am. Ceram. Soc., 38, [3], 102-113, (1955).
18.S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate, J. Am. Ceram. Soc., 90 2589-2594 (2007).
19.S. T. Bae, D. K. Yim, and K. S. Hong, “Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO-Doped BaTiO3, J. Appl. Ceram. Technol., 679-686, 2009.
20.Preparation of MgO-coated BaTiO3 particles through a surface-induced precipitation method.(2005)
21.W. C. Yang, C. T. Hu, I. N. Lin, “Effect of Y2O3/MgO Co-doping on the Electrical Properties of Base-Metal-Electroded BaTiO3 Materials, J. Euro. Ceram. Soc., 24, 2004, 1479-1483.
22.F. A. Kroger and H. J. Vink, “Solid State Physics. eds. F. Seitz and D. Turnbull, Academic Press, New York, 1956.
23.Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imadeda, Y. Takahash, H. Ohsato, and T. Okuda, “The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3, Jpn. J. Appl. Phys., 36, 5954 - 5957, (1997).
24.C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong, and K. H. Hur, “Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC, J. Eur. Ceram. Soc., 28, 1213 - 1219, (2008).
25.C. S. Chen, C. C. Chou, W. C. Yang, and I. N. Lin, “TEM microstructure of X7R type base-metal-electroded BaTiO3 capacitor materials co-doped with MgO/Y2O3 additives, Ferroelectrics, 332, 41 - 44, (2006).
26.T.Buscaglia, V. Buscaglia, and M. Viviani, “Atomistic Simulation of Dopant Incorporation in Barium Titanate, J. Am. Ceram. Soc., 84 [2], 376-84, 2001.
27.G. Y. Yang, G. D. Lian, E. C. Dickey, and C. A. Randall, “Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II—insulation resistance degradation under applied dc bias, J. of Appl. Phys. 96, (2006).
28.J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics. J. Am. Ceram. Soc., 82 [5], 1345-48, 1999.
29.Y. H. Song, J. H. Hwang and Y. H. Han, “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3, Jpn. J. of Appl. Phys., 44, 2005, 1310-1313.
30.J. H. Kim, S. H. Yoon, and Y. H. Han, “Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3, J. Euro. Ceram. Soc., 2007, 1113-1116.
31.H. Lin, H. Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3, Materials Science and Engineering A335, 2002, 101-108.
32.G. V. Lewis and C. R. A. Catlow, “PTCR Effect in BaTiO3, J . Am. Ceram. Soc., 68 [l0], 555-58, 1985.
33.J. N. Kim, T. S. Byun, and C. S. Kim, “Preparation of Core-Shell BaTiO3 Particles Coated with MgO, J. Chem. Eng. Jpn., 38, [8], 553-557, (2005).
34.王婉寧,氧化鎂及氧化釔添加對鈦酸鋇結構與介電性質之影響,國立成功大學資源工程研究所碩士論文,民國一百零一年。