跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林舜寬
研究生(外文):Shun-KuanLin
論文名稱:修飾層的介面植入於並五苯小分子及高分子電晶體之研究
論文名稱(外文):Research of Interface Insertion by Modification Layer on Both Pentacene-based Organic –and Conjugated Polymer Thin Film Transistors
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:66
中文關鍵詞:修飾層有機薄膜電晶體並五苯三層絕緣層結構F4-TCNQn-型電晶體
外文關鍵詞:Modification layerOrganic thin film transistor (OTFT)PentaceneTri-layer dielectricsF4-TCNQN-type polymer transistor.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在於以修飾層加入有機薄膜電晶體,使得電晶體的電性表現有明顯的改善。而以下針對小分子及高分子電晶體所加入的修飾層所做的改善來做說明:
首先為了試著去改善絕緣層品質,我們以並五苯(pentacene)小分子有機半導體為主動層,並以三層(一層未交聯/兩層交聯)的複合結構來取代單層/雙層絕緣層,一方面可以強化絕緣層的絕緣能力,另一方則將最上層未交聯的絕緣層來當作表面修飾層改善元件特性。實驗結果顯示,在用了三層絕緣層的結構後,用SEM去觀察絕緣層表面,因上層絕緣層修補的效果,表面幾乎找不到裂隙,這也許可以說明為什麼三層結構的漏電流特性會優於單層甚至雙層的絕緣層。並且上層未交聯的絕緣層與並五苯表面能較匹配,使得並五苯(pentacene)薄膜有較好的表面型態及較大的結晶區域,並得到電性較好及較為穩定的電晶體特性。
除了改善主動層薄膜成長的品質,改善電晶體特性比較常用的另一種方式為增進載子從源/汲極注入的效率。對於增進載子從源/汲極注入的效率方面,我們提出以極薄的F4-TCNQ來修飾源/汲電極(source/drain electrode)和並五苯的介面,其目的在於利用穿透效應來降低金(源/汲電極)和並五苯介面的接面能障,進而增加載子的注入效率,還可以有效增加電晶體的場效遷移率從9 cm2/ Vs 到11.27 cm2/ Vs,臨界電壓從-1.46V降低至-1.05V, 並且很重要的,在很小的閘極電壓VG=-3.5V時, 接觸電阻可從44 kΩ降低至29.58 kΩ。實驗結果証實,1nm F4-TCNQ 修飾層可達到最佳化的效果, 此項結論也可由表面平坦度的結果得到證實。
另外,我們以PANI-PVA為主要的有機半導體層並以PSS-PVA為高分子電解質修飾層,形成複合式高分子層來做為通道,以達成n型電晶體特性表現。實驗發現,若沒有PSS-PVA的加入,則PANI-PVA電晶體表現有如一個電阻,完全沒有電晶體特性。若有PSS-PVA高分子電解質的加入,則元件表現就如n型電晶體的電性特徵。這是由於在閘極電場作用力下,PSS-PVA中的氫離子能夠坎入高分子PANI-PVA主動層,使得主動層進而達到摻雜H+的目的,並因而調變電流。也因為PANI-PVA是屬於n型電晶體,將有機薄膜電晶體應用到互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor) (CMOS) 已是可行的。此n型電晶體,其場效遷移率(field-effect mobility)為2.32 cm2/ Vs且 on/off ratio 也有近10的水平。

In this study, research on application of modification layer in both small molecule and conjugated polymer in organic thin film transistors was presented.
For improvement of the insulator’s property to prevent unstable characteristics and breakdown phenomenon result due to the high leakage current, tri-layer [1 non-cross-linked PVP (NCPVP)/ 2 cross-linked PVP (CPVP)] dielectrics structure was applied to small molecule pentacene-based OTFTs. From the scanning electron microscope (SEM) results, some cracks and valleys couldn’t be found on the surface of PVP dielectric. This is because the NCPVP/2CPCP specific structure could not only strengthen the polymer insulator property, but also optimize the surface energy to facilitate the deposition of pentacene film. The experimental results suggest that the leakage current of the device with tri-layer NCPVP/2CPVP dielectrics has best leakage performance compared with single-layer CPVP or dual layer CPVP, which may be ascribed to the surface energy optimal matching and the reduction of cracks and valleys generated during the thermal treatment process. Therefore, the lower surface energy on the surface of tri-layer polymer dielectrics results in better pentacene film morphology and larger crystalline size, contributing to better output characteristics and more stable properties of OTFTs.
Except active film quality improvement, enhancing the injection efficiency from source/drain to active layer is another effective way to improve device performance. We proposed 1 nm of F4-TCNQ insertion between pentacene and Au source/drain, which is accompanied by improved mobility from the maximum 9 cm2/ Vs to 11.27 cm2/ Vs and reduced threshold voltage from -1.46V to -1.05V, and the contact resistance was also modified from 44 kΩ to 29.58 kΩ at VG=-3.6V. With optimal 1 nm-thick F4-TCNQ, work function modification by tunneling carrier transport will make the carrier injection process more easily. The experimental results suggest 1nm F4-TCNQ insertion also get smoother surface, which contribute to best performance.
For the polymer-based OTFTs, an n-type transistor with the composite channel structure consisting of Poly(styrenesulfonate)-polyvinyl alcohol (PSS-PVA) modification layer and active material polyaniline-polyvinyl alcohol (PANI-PVA) was proposed. From the experimental results observed, the PANI-PVA device without the electrolyte PSS-PVA exhibited a resistor behavior. With the insertion of the PSS-PVA electrolyte layer, the device behaved as a n-type transistor working in enhancement mode. This is due to the H+ cations of PSS-PVA inserted into PANI-PVA, which was then doped by H+ cations, and the PANI-PVA state changed from emeraldine base to emeraldine salt. However, PANI-PVA OTFTs exhibit n-type transistor behavior, which is available for the design of organic complementary metal oxide semiconductor (CMOS) integrated circuit. For PANI-PVA n-type transistor, the filed-effect mobility is 2.32 cm2/ Vs and on/off ratio is about 10.
CONTENTS
中文摘要...................................................IV

Abstract..................................................VI

Contents...................................................X

Figure captions.........................................XIII

Table captions...........................................XVI

Contents
Chapter1 Introduction....................................1
1.1 Organic Semiconductor................................2
1.1.1 Formation of π Electrons and π System..............2
1.1.2 Charge Transport...................................5
1.2 Organic Thin Film Transistor.........................7
1.2.1 The Development of Organic Thin Film Transistor....8
1.2.2 Basic Device Operation.............................9
1.2.3 Critical parameters of OTFTs......................10
1.3 Motivation........................................12
1.3.1 Small Molecular Based Organic Thin Film Transistors ..................................................13
1.3.2 Polymer-Based Organic Thin Film Transistors.......13

Chapter2 Tri-layer Polymer Gate Dielectrics..............15
2.1 Researchs on Polymer Dielectrics..................15
2.2 Fabrication of OTFTs with Tri-layers Structure....17
2.3 Leak Current and Cracks Performance on Polymer Dielectrics...............................................20
2.4 Surface Energy and Morphology on Polymer Dielectrics ..................................................23
2.5 X-Ray Diffraction.................................24
2.6 Current-Voltage Characteristics...................25
2.7 Summary...........................................28

Chapter3 Influence of Inserting A Thin F4-TCNQ Layer between Pentacene and Au..................................29
3.1 F4-TCNQ Inserting Layer...........................30
3.2 The Fabrication of Pentcene Based Transistor with F4-TCNQ ..................................................31
3.3 Work Function Modification and Carriers Tunneling in Au/F4-TCNQ/Pentacene structure.........................33
3.3.1 Current-Voltage Characteristics...................34
3.3.2 Transmission Line Method and Contact Resistance...35
3.3.3 Work Function Modification in Au/F4-TCNQ/Pentacene Structure.................................................36
3.3.4 Influenc of Surface Roughness of Pentacene with Insertion of Different F4-TCNQ Thickness..................37
3.4 Summary...........................................39


Chapter4 An N-type Organic Thin Film Transistor by Controlling Conjugated Polymer Doping.....................40
4.1 Doping Process of Conjugated Polymer..............40
4.2 The PANI-PVA/PSS-PVA OTFTs Fabrication............42
4.3 Current-Voltage and Doping mechanism...............45
4.4 Summary...........................................50

Chapter 5 Conclusions and Future Works...................51

Reference.................................................53

Publication List..........................................64
References
[1]S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 133. New York: Wiley, 1985.
[2]C.K. Chiang, C.R. Fincher, J.Y.W. Parker, A.J. Heeger, H. Shirakawa, E. J. Louis, S.C. GAU, and A.G. MacDiarmid,“ Electrical Conductivity in doped polyacetylene, Phys. Rev. Lett., vol. 39, no. 17, pp. 1098-1101 Oct. 1977.
[3]R. M. Meixner, H. Göbel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider, “Wavelength-selective organic field-effect phototransistors based on dye-doped poly-3-hexylthiophene, Appl. Phys. Lett. vol. 89, no. 9, p. 092110, Aug. 2006.
[4]D. Guo, K. Sakamoto, K. Miki, S. Ikeda, and K. Saiki, “Orientation control of pentacene molecules and transport anisotropy of the thin film transistors by photoaligned polyimide film, Appl. Phys. Lett., vol. 90, no. 10, p. 102117, Mar. 2007.
[5]M. Hamedi, R. Forchheimer and O. Ingana, “Towards woven logic from organic electronic fibers, Nat. Mater., vol. 6, no. 5, pp. 357-362, Apr. 2007.
[6]J. C. Scott and G. G. Malliaras, In conjugated polymers, Germany: Wiley-VCH, 1999.
[7]J.M. Nunzi, Organic photovoltaic materials and devices, C.R. Phys., vol. 3, no. 4, pp. 523-542, Mar. 2002
[8]B.A. Gregg, “Excitonic solar cells, J. Phys. Chem. B., vol. 107, no. 20, pp. 4688-4698, May. 2003.
[9]H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors, J. Appl. Phys. vol. 92, no. 9, pp. 5259-5263, Aug. 2002.
[10]Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, M. E. Thompson, “Three-color, tunable, organic light-emitting devices, Science vol. 276, no. 5321, pp. 2009-2011, May. 1997.
[11]C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits, Appl. Phys. Lett. vol. 73, no. 1, pp. 108-110, May. 1998.
[12]Ioannis Kymissis, Organic field effect: Transistors theory, fabrication and characterization, p.7. New York: Springer press, 2009.
[13]Z. Bao, J. Locklin, and J. J. Locklin, Organic field-effect transistors, p.46. New York: Taylor and Francis, 2007.
[14]C. D. Dimitrakopolulos and D. J. Mascaro, “Organic thin film transistor: A review of recent advances, IBM J. Res. Develop., vol. 45, no. 1, pp. 11-28, Jan. 2001.
[15]J. M. Shaw, and P. F. Seidler, “Organic electronics: Introduction, IBM J. Res. Develop., vol. 45, no. 1, pp. 3-10, Jan. 2001.
[16]J. Zhang, J. Wang, H. Wang and D. Yan, “Organic thin-film transistors in sandwich configuration, Appl. Phys. Lett., vol. 84, no. 1, pp. 142-144, Jan. 2004.
[17]U. Zschieschang, H. Klauk, M. Halik, G. Schmid and C. Dehm, “Flexible organic circuit with printed gate electrodes, Adv. Mater., vol. 15, no. 14, pp. 1147-1151, Jul. 2003.
[18]M. Pope and C.E. Swenberg, Electronic processes in organic crystals and polymers, New York: Oxford University Press, 1999.
[19]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface, J. Appl. Phys. vol. 54, no. 6, pp. 3255-3259, Jun. 1983.
[20]A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic device Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett., vol. 49, no. 18, pp. 1210-1212, Nov. 1986.
[21]G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl, Solid State Commun., vol. 72, no. 4, pp. 381-384, Mar. 1989.
[22]H. E. Katz, “Organic molecular solids as thin film transistor semiconductors, J. Mater. Chem., vol. 7, no. 3, pp. 369-376, July 1997.
[23]C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics, Adv. Mater., vol. 14, no. 2, pp. 99-117, Jan. 2002.
[24]J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. E. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks, Proc. Nat. Acad. Sci. vol. 98, no. 9, pp. 4835-4840, Apr. 2001.
[25]C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates, Appl. Phys. Lett., vol. 80, no. 6, pp. 1088-1090, Feb. 2002.
[26]Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, “Humidity sensors based on pentacene thin film transistors, Appl. Phys. Lett. vol. 81, no. 24, pp. 4643-4645, Dec. 2002.
[27]B.K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H.E. Katz, Z. Bao, “Organic oscillator and adaptive amplifier circuit for chemical vapor sensing, J. Appl. Phys. vol. 91, no. 12, pp. 10140-10146, Jun. 2002.
[28]D. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed organic and molecular electronics, p.7. New York: Springer press, 2004.
[29]Y. Jang, W.H. Lee, Y.D. Park, D. Kwak, J.H. Cho, K. Cho, “High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators, Appl. Phys. Lett., 94, 183301 (2009)
[30]J. A. Cheng, C. S. Chuang, M. N. Chang, Y. C. Tsai, and H. P. Shieh, Enhanced field-effect mobility in pentacene based organic thin-film transistors on polyacrylates, J. Appl. Phys. 105, 064506 (2009)
[31]S. J. Jo, C.S. Kim, J.B. Kim, J. Kim, M.J. Lee, H.S. Hwang, H.K. Baik, Y.S. Kim,Surface property controllable multilayered gate dielectric for low voltage organic thin film transistors,Appl. Phys. Lett., 93 083504 (2008)
[32]B. Stadlober, M. Zirkl, M. Beutl, and G. Leising, High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric,Appl. Phys. Lett. vol. 86, no. 24, p.242902, Jun. 2005.
[33]K. Müller, I. Paloumpa, K. Henkel, and D. Schmeisser,“A polymer high-k dielectric insulator for organic field-effect transistors, J. Appl. Phys. vol. 98, no. 5, p. 056104, Sep. 2005.
[34]M. G. Kanatzidis, “Conductive polymers, Chem. Eng. News, vol. 68, no. 49, pp. 36-54, Dec. 1990.
[35]D. K. Hwang, J. H. Park, J. Lee, J. M. Choi, J. H. Kim, E. Kim, and S. Im, “Improving resistance to gate bias stress in pentacene TFTs with optimally cured polymer dielectric layers, J. Electrochem. Soc., vol. 153, no. 1, pp. G23-G26, May 2006.
[36]M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “Polymer gate dielectrics and conducting-polymer contacts for high-performance organic thin-film transistors, Adv. Mater. vol. 14, no. 23, pp. 1717-1722, Dec. 2002.
[37]M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, and W. Weber, “Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors, Adv. Mater. vol. 15, no. 11, pp. 917-922, Jun. 2003.
[38]L. F. Drummy and D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin Films, Adv. Mater. vol. 17, no. 7, pp.903-907, Apr. 2005.
[39]W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, Effect of surface free energy in gate dielectric in pentacene thin-film transistors, Appl. Phys. Lett., vol. 89, no. 11, p. 112126, Sep. 2006.
[40]K. Shin. S. Y. Yang, C. Yang, H. Jeon, and C. E. Park, “Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors, Organic Electronics, vol. 8, no. 4, pp. 336-342, Aug. 2007.
[41]D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, “Polymer/YOx hybrid-sandwich gate dielectrics for semitransparent pentacene thin-film transistors operating under 5 V, Adv. Mater. vol. 18, no. 11, pp.2299-2303, Sep. 2006.
[42]D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications, J. Appl. Phys. vol. 80, no. 4, pp.2501-2508, May 1996.
[43]D. K. Hwang, Min Suk Oh, J. M. Hwang, J. H. Kim, and S. Im, Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics, Appl. Phys. Lett., 92, 013304 (2008).
[44]R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M.Grigas and K. Dimmler, Radio frequency rectifiers based on organic thin-film transistors, Appl. Phys. Lett., vol. 88, p.123502, March 2006.
[45]S. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe and P. Heremans,Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags, Appl. Phys. Lett., vol. 99, p.114519, June 2006.
[46]L. Herlogsson, M. Cölle, S. Tierney, X. Crispin, and M. Berggren, low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors, Adv. Mater., vol. 22, pp. 72-76, Sep. 2010.
[47]J. Li, X. W. Zhang, L. Zhang, H. Zhang, X.Y. Jiang, K.-ul Haq, W. Q. Zhu, and Z. L. Zhang, MoOx interlayer to enhance performance of pentacene-TFTs with low-cost copper electrodes, Synthetic. Met., vol. 160, pp. 376-379, Mar. 2010.
[48]C. Y. Wei, S. H. Kuo, Y. M. Hung, W C. Huang, F. Adriyanto, and Y. H. Wang,High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator, IEEE Electron. Device Lett., vol. 32, no. 1, pp. 90-92, 2011.
[49]C. Y. Wei, W. C. Huang, C. K. Yang, Y. Y. Chang, and Y. H. Wang, Low-operating-voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators, IEEE Electron. Device Lett., vol.32, no.12, pp. 1755-1757, 2011.
[50]N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, and A. Elschner, Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism, Appl. Phys. Lett., vol. 82, pp. 70-72, Jan. 2003.
[51]F. M. Gray, Solid Polymer Electrolytes: Fundamentals and technological applications, New York: VCH Publications, 1991.
[52]D. W. Chou, Y. J. Lin, J. H. Wei-Chin, Y .C. Li and Y. H. Wang, Enhancement of electrical properties in pentacene-based thin-film transistors using a lithium fluoride modification layer, Solid State Electronics, vol.64, no. 1, pp1-5, Oct. 2011.
[53]S. Y. Park, Y. H. Noh, and H. H. Lee, “Introduction of an interlayer between metal and semiconductor for organic thin-film transistors,Appl. Phys. Lett., vol. 88, p. 113503, Mar. 2006.
[54]T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, “Charge injection process in organic field-effect transistors, Appl. Phys. Lett., vol. 91, p. 053508, Aug. 2007.
[55]Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, and Y. Tokura, “Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors,Appl. Phys. Lett., vol. 87, p. 153506, Oct. 2005.
[56]T. T. Wooster, M. L. Longmire, H. Zhang, M. Watanabe, and R. W. Murray, “Experimental aspects of solid-state voltammetry, Anal. Chem., vol. 64, no. 10, pp.1132-1140, May 1992.
[57]S. Chao, and M. S. Wrighton, “Solid-state microelectrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on Poly(3-methylthiophene), J. Am. Chem. Soc., vol. 109, no. 7, pp.2197-2199, Apr. 1987.
[58]S. K. Rout, T. Badapanda, and S. Panigrahi, “Dielectric study of spin coated nano-thick BaZrxTi1-xO3 film, Indian J. Pure Appl. Phys., vol. 45, pp. 749-753, Sep. 2007.
[59]D. R. Talham, R. M. Crooks, V. Cammarata, N. Leventis, M. O. Schloh, and M. S. Wrighton, NATO ASI Ser., Ser. B 248, 627, 1990.
[60]P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors, Solid-State Electron. vol. 47, no. 2, pp. 259-262, Feb. 2003.
[61]Z. Bao, and J. Locklin, “Organic field-effect transistors, CRC Press, Boca Raton, pp. 149, 2007.
[62]H. Benisty, and J. N. Chazalviel, “Electrochemical field effect as a probe of double-layer dynamics, J. Electrochem. Soc., vol. 140, no. 7, pp.1949-1955, Jul. 1993.
[63]C. Lu, Q. Fu, S. Huang, and J. Liu, “Polymer electrolyte-gated carbon nanotube field-effect transistor, Nano Lett., vol. 4, no. 4, pp. 623-627, Mar. 2004.
[64]W.Y. Gao and A. Kahn, Controlled p doping of the hole-transport molecular material N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine with tetrafluorotetracyanoquinodimethane, J. Appl. Phys. vol. 94, pp.359, 2003.
[65]X. Yu, J. Yu, J. Zhou, J. Huang, and Y. Jiang, “Hole mobility enhancement of pentacene organic field-effect transistors using 4,4’,4 -tris[3-methyphenyl(phenyl)amino] triphenylamine as a hole injection interlayer, Appl. Phys. Lett., vol. 99, p. 063306, Aug. 2011.
[66]C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin film transistors with metal oxide/metal bilayer electrode, Appl. Phys. Lett., vol. 87, p. 193508, Nov. 2005.
[67]M. Chi, Y.-P Zhao, “First principle study of the interaction and charge transfer between graphene and organic molecules, Computational Materials Science, vol.56, pp.79-84, Feb. 2012.
[68]T. T. Wooster, M. L. Longmire, H. Zhang, M. Watanabe, and R. W. Murray, “Experimental aspects of solid-state voltammetry, Anal. Chem., vol. 64, no. 10, pp.1132-1140, May 1992.
[69]D. R. Talham, R. M. Crooks, V. Cammarata, N. Leventis, M. O. Schloh, and M. S. Wrighton, Solid-State Microelectrochemical Devices: Transistor and Diode Devices Employing a Solid Polymer Electrolyte, NATO ASI Ser., Ser. B 248, 627, 1990.
[70]H. Benisty, and J. N. Chazalviel, “Electrochemical field effect as a probe of double-layer dynamics, J. Electrochem. Soc., vol. 140, no. 7, pp.1949-1955, Jul. 1993.
[71]C. Lu, Q. Fu, S. Huang, and J. Liu, “Polymer electrolyte-gated carbon nanotube field-effect transistor, Nano Lett., vol. 4, no. 4, pp. 623-627, Mar. 2004.
[72]G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly efficient gating and doping of carbon nanotubes with polymer electrolytes, Nano Lett., vol. 4, no. 5, pp.927-931, Apr. 2004.
[73]M. J. Panzer, C. R. Newman, and C. D. Frisbie, “Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric, Appl. Phys. Lett., vol. 86, no. 10, p.103503, Feb. 2005.
[74]Y. J. Lin, Y. C. Li, C. C. Yeh, S. F. Chung, L. M. Huang, T. C. Wen and Y. H. Wang, “Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer, Appl. Phys. Lett. vol. 89, no. 12, p.223518, Dec. 2006.
[75]Y. Yang, A. J. Heeger, “Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency, Appl. Phys. Lett., vol. 64, no. 10, pp.1245-1247, Jan. 1994.
[76]Y. C. Li, Y. J. Lin, H. J. Yeh, T. C. Wen, L. M. Huang, Y. K. Chen, and Y. H. Wang, “Ion-modulated electrical conduction in polyaniline-based field-effect transistors, Appl. Phys. Lett. vol. 92, p.093508, Dec. 2008.
[77]M. J. Panzer, and C. D. Frisbie, “Polymer Electrolyte-Gated Organic Field-Effect Transistors: Low Voltage, High Current Switches for Organic Electronics and Testbeds for Probing Electrical Transport at High Charge Carrier Density, J. Am. Chem. Soc., vol.129, p.6599, 2007 .
[78]J. D. Yuen, A. S. Dhoot, E. B. Namdas, N. E. Coates, M. Heeney, I. McCulloch, D. Moses, and A. J. Heeger, Electrochemical doping in electrolyte-gated polymer transistors, J. Am. Chem. Soc., vol.129, p.14367, 2007.
[79]E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, and M. Berggren, “Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film,Appl. Phys. Lett., vol.89, p.143507, 2006.
[80]L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. J. Hagel, G. Gustafsson, and M. Berggren, Low-voltage polymer field-effect transistors gated via a proton conductor, Adv. Mater., vol.19, p.97, 2007.
[81]A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated grapheme transistor, Nature Nanotechnology, vol.3,no.4,pp. 210-215, 2008.
[82]M. Taniguchi, and T. Kawai, Vertical electrochemical transistor based on poly(3-hexylthiophene) and cyanoethylpullulan,Appl. Phys. Lett., vol.85, p.3298, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊