跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖彥凱
研究生(外文):Yen-KaiLiao
論文名稱:動態取像下之特徵辨識於自動檢測系統之研究
論文名稱(外文):Study on the Characteristic Recognition in Fly Vision for Automatic Inspection Systems
指導教授:田思齊
指導教授(外文):Szu-Chi Tien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:自動光學檢測區域二元模式(LBP)卡曼濾波器
外文關鍵詞:Automated Optical InspectionLocal Binary Pattern(LBP)Kalman Filter
相關次數:
  • 被引用被引用:4
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的在於使用動態取像的方式提升自動光學檢測系統的檢測效能。藉由動態取像的方式,雖然可以避免檢測過程中發生停頓,但會造成相機與檢測物存在相對速度,使拍攝影像可能有模糊的現象發生。因此,本論文中使用反饋與前饋控制,且透過卡曼濾波器對檢測物進行位置預測,以提升追蹤待測物的性能並減少模糊的可能。由實驗結果可發現,使用區域二元模式(LBP)擷取影像的紋理特徵,可以比擷取外型特徵擁有更高的可靠度,因此,在影像辨識上先使用區域二元模式擷取影像的紋理特徵再透過樣本比對法進行影像辨識。本論文以字元辨識為例,證實運用所建議之動態檢測方法,當追蹤位置與速度誤差進入穩態階段後再擷取影像進行辨識,字元辨識皆能準確辨識出影像字元。
The main goal of this research is to improve the efficiency of automatic optical inspection(AOI) systems by conducting the inspection process in fly vision. Although conducting the inspection process in fly vision can avoid the pause of inspected objects, there may exist relative velocity between the camera and object and then make images fuzzy. Therefore, besides feedforward and feedback control is adopted, kalman filter is also utilized to predict the position of inspected object to enhance the tracking performance and reduce problems of fuzzy images. Experimental results show that, compared with contour-matching method, local binary pattern(LBP) can reveal the textural characteristic of detected objects and is more reliable for characteristic recognition. Therefore, during the image processing, LBP is utilized and followed by template-matching process for characteristic recognition. In this research, a character recognition example is used to verify that, with the proposed inspection process in fly vision,precise character recognition can be achieved if the image processing is conducted when the tracking position and velocity errors are in steady- state.
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章檢測影像辨識. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 影像前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 直方圖等效. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 中值濾波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Otsu二值化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 字元分割. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 區域二元模式(Local Binary Pattern) . . . . . . . . . . . . . . . . . . . . . 22
2.4 字元辨識. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
第三章控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 反饋控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 干擾估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 微分估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 PI控制器Gcv設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 PID控制器Gcp n設計. . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 前饋控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 卡曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 前饋控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 狀態估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
第四章檢測系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 檢測模組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 檢測物移動模組. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 軟體實現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
第五章實驗與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 線性馬達追蹤控制實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 影像辨識實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 位置預測機制實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 檢測系統實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
第六章結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
附錄A 誤差方程式之拉氏轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
[1] R.Aidan Martin and Neil Hammerschlag. Marine predator-prey contests: Ambush and speed versus vigilance and agility. Marine Biology Research, pages 90-94.Taylor and Francis, 2012.
[2] X.W. Lin. Model-fusion-based precision motion control of linear motors. Master's thesis, National Cheng Kung University, 2013.
[3] Roland T. Chin and Charles A. Harlow. Automated visual inspection: A survey.IEEE Transactions on Pattern Analysis and Machine Intelligence, PAM1-4(6):557-573, 1982.
[4] E.R DAVIES. Comouter and Machine Vision : Theory,Algorithms,Practicalities.Academic Press,USA, 2012.
[5] Anuwat Jangwanitlert Somyot Kaitwanidvilai and Anakkapon Saenthon. Smarton the fly vision for smart manufacturing inspection system. Proceedings of the IASTED Asian Conference on Power and Energy Systems, AsiaPES, pages 232-235.Acta Press, 2012.
[6] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop,pages 674-679, 1981.
[7] M. Harwood D. Ojala, T. Pietikainen. Performance evaluation of texture measures with classi cation based on kullback discrimination of distributions. Proceedings of
the 12th IAPR International Conference on Pattern Recognition, 1:582-585, 1994.
[8] K.-M. Lee and Y. Qian. A vision-guided fuzzy logic control system for dynamic pursuit of a moving target. Microprocessors and Microsystems, pages 571-580. Acta
Press, 1998.
[9] A.P. Klimley. The Predatory Behavior of the White Shark. Sigma Xi, The Scienti c Research Society, 1994.
[10] P. M. Sharkey and D. W. Murray. Delays versus performance of visually guided.IEE Proceedings on Control Theory Applications, 143:436-447, 1996.
[11] E. Brookner. Tracking and Kalman Filtering Made Easy. John Wiley and Sons,New York, 1998.
[12] W.C. Hsu. Vision-based position prediction and classi cation of moving objects.
Master's thesis, National Cheng Kung University, 2005.
[13] P. Swaminathan T. Mahalakshmi, R. Muthaiah. An overview of template matching technique in image processing. Engineering and Technology, 4(24):5469-5473, 2012.
[14] Christopher J.C. Burges. A tutorial on support vector machines for pattern recog-nition. Data Min. Knowl. Discov., 2:121-1367, 1998.
[15] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Upper Saddle River,2008.
[16] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans.Sys., Man., 9(1):62-66, 1979.
[17] Xia Huadong and Liao Dongchu. The study of license plate character segmentation algorithm based on vetical projection. IEEE Computer Society, pages 4583-4586.
International Conference on Consumer Electronics, 2011.
[18] Mohammed Ali Qatran. Template matching method for recognition musnad char-acters based on correlation analysis. ACIT'2011 Proceedings, 2011.
[19] Jianhong Xie. Optical character recognition based on least square support vector machine. 3rd International Symposium on Intelligent Information Technology
Application, 1:626-629, 2009.
[20] K. Fukushima. Character recognition with neural networks. Neurocomputing,4(5):221-233, 1992.
[21] Jonathan Y. Stein. Digital Signal Processing: A Computer Science Perspective.John Wiley and Sons, USA, 2000.
[22] T. Umeno and Y. Hori. Robust speed control of dc servomotors using modern two
degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics,38(5):363-368, 1991.
[23] U.A. Bakshi and V. Bakshi. Modern Control Theory. Technical Publications, 2009.
[24] R. H. Brown, S. C. Schneider, and M. G. Mulligan. Analysis of algorithms for
velocity estimation from discrete position versus time data. IEEE Transactions on Industrial Electronics, 39(1):11-19, 1992.
[25] Y.J. Li. Precision motion control of linear motor with nonlinear friction phenomena compensation. Master's thesis, National Cheng Kung University, 2010.
[26] K. Astrom and T. Hagglund. PID Controller: Theory, Design and Tuning. Instrument Society of America, USA, 1995.
[27] Rudolph Emil Kalman. A new approach to linear ltering and prediction problems.Transactions of the ASME{Journal of Basic Engineering, 82(Series D):35-45, 1960.
[28] Greg Welch and Gary Bishop. An introduction to the kalman lter. Department of Computer Science University of North Carolina at Chapel Hill, 2006.
[29] Robert Grover Brown. Introduction to Random Signals and Applied Kalman Filtering: with Matlab Exercises and Solutions. John Wiley and Sons, 1997.
[30] G. M. Clayton, S.C. Tien, K. K. Leang, Q. Zou, and S. Devasia. A review of feedforward control approaches in nanopositioning for high-speed spm. Journal of
Dynamic Systems, Measurement, and Control, 131(6):061101-061101, 2009.
[31] K. K. Leang, Zou Qingze, and S. Devasia. Feedforward control of piezoactuators in
atomic force microscope systems. Control Systems, IEEE, 29(1):70-82, 2009.
[32] K. Ogata. Modern Control Engineering. Prentice-Hall,ING, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top