跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龍慧圃
研究生(外文):Huei-PuLong
論文名稱:金屬光罩輔助CO2雷射加工微流體晶片於懸浮微粒分離之應用
論文名稱(外文):Fabrication of microfluidic chip using foil-assisted CO2 laser ablation for suspended particles separation
指導教授:鍾震桂
指導教授(外文):Chen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:二氧化碳(CO2)雷射金屬光罩輔助微流體晶片親水性改質
外文關鍵詞:microfluidic chipCO2 laserfoil mask assistedhydrophilic modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要利用二氧化碳(CO2)雷射搭配金屬光罩輔助,對PMMA(Polymethylmethacrylate)高分子材料加工出螺旋形微流晶片,對含懸浮微粒流體達成粒子與溶劑分離的目的,搭配親水改質等後續處理,期望以省時低成本高精度的製程完成自驅動分離微流晶片。
微流體實驗晶片(Lab on a chip,LOC)主要應用在生醫檢測的簡化檢測步驟上,例如混合、分離都是常見的功能之一。本實驗設計螺旋形微流道晶片,搭配尾端結構,利用互補的流場設計,期望能完成不需外接其他儀器單靠幾何設計而達成微粒溶劑分離的目的。
而在晶片加工方式的選擇上,雷射比起傳統的光蝕刻加工技術雖然擁有省時及成本上的優勢,但在加工熱塑性高分子材料時常會產生諸多熱缺陷,這些缺陷往往會影響微流晶片的接合和流體流動,進而導致滲漏或是阻塞的情形發生。針對這些缺陷我們使用的金屬薄膜光罩來輔助雷射加工。實驗結果證明此法可以有效降低加工過程中熱影響的情形,減少熱缺陷發生的同時更提供精確的流道尺寸。輔助金屬光罩能將凸塊高度由傳統雷射加工的平均凸塊高度5 μm降至約1.5 μm,流道尺寸也能由230 μm控制於約120 μm。
在微流晶片流動過程中,驅動流體流動的動力設計也是一大課題。大部分的微流趨動皆須附加額外的動力來源,而為了符合微流晶片小體積便利性的優勢,本研究使用不需額外搭配動力源的毛細力,利用親水改質的方式,除了幫助晶片達成自驅動實驗流體的目的,也能提升非親水材質微流晶片的實驗品質,使微流晶片材料選擇可延伸至更多非親水基材上。我們使用結合氣相改質及化學濕式改質的方式,將斥水的PDMS表面控制在接觸角小於90度的親水狀態,同時也提供大於420小時、三周的親水性維持,大大延長親水改質面臨斥水恢復現象所需的時間,證實此複合改質的方式能以簡單而低成本的過程,達到長時效親水的改質目的。
整體而言,本文發展一種微流體的分離晶片,為一設計、製程、改質到最後的微粒分離的完整流程。製程在低成本及高便利性的前提下也保證了一定的晶片精度,而懸浮微粒的分離僅靠晶片形狀設計產生流場做驅動力,不需要外接其他動力源,在一定的流量範圍內也能達到99%的分離效率,在生醫微流分離晶片的領域中具有一定的發展性。

Lab on a chip (LOC) was mainly used in the simplification of biomedical detection step, and separation is one of the indispensable pretreatment during the detection process. In this study a combination channel of spiral and backward facing step patterns were designed to optimize the separation function without any extra power like electric or magnetic field. The foil-assisted CO2 laser method was used to process spiral microfluidic chip with PMMA (Polymethylmethacrylate) polymer for the separation of suspended particles.
Although laser ablation was widely used due to its cheap and convenient characteristic, it generates poor surfaces quality during the ablating process with polymers. In this study, a different types of foil-assisted laser micromachining technique was developed to carry out the improvement of microchannel surfaces quality. The results showed that the bulges height was reduced from 5 to 1.5 μm and the channel width was reduced from 230 to 120μm.
Besides, some polymer microchips had an inherent hydrophobic property, which may affect the flow process during the fluidic experiment. Accordingly, this study proposes a polyethylene glycol (PEG) coating for improving the long-term hydrophilic properties of PDMS substrates for over 420 hours.
To sum up, a costless and time-saving procedure, including microchip fabrication and surface modification, was developed to apply positively in microfluidic separation chip with a combination flow distribution design including spiral dean vortices and backward facing step, which can provide 99% separation efficiency within a certain flow range.

目錄
摘要 I
誌謝 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 5
2-1 微流體晶片製程發展文獻回顧 5
2-2 分離式微流體晶片文獻回顧 10
2-3 雷射加工技術文獻回顧 16
2-4 PDMS表面改質技術文獻回顧 23
第三章 實驗設計與步驟 27
3-1 流道結構設計原理 27
3-1.1 慣性升力原理(Inertial lift force effect) 27
3-1.2 迪因渦流(Dean vortices) 28
3-1.3 分支定律(Bifurcation law, Zweifach-Fung effect) 29
3-1.4 背向階梯式流場(Backward facing step) 31
3-1.5 微流晶片結構設計 33
3-2 實驗材料介紹 37
3-3 實驗儀器設備介紹 41
3-4 流道製程步驟 48
3-5 PEG應用於隔離層與親水改質處理 52
3-6 流體實驗基本設置 55
第四章 結果與討論 56
4-1 微流晶片加工與改質 56
4-1.1 一般雷射加工與金屬光罩輔助加工熱缺陷比較 56
4-1.2 一般雷射加工與金屬光罩輔助加工尺寸之比較 61
4-1.3 複合式長時效親水改質 64
4-2 懸浮微粒分離 71
4-2.1 螺旋流道分離 72
4-2.2 階梯式突張結構分離 75
4-2.3 流量極值與分離效率 78
第五章 結論與未來展望 86
5-1 結論 86
5-2 本文貢獻 89
5-3 未來展望 91
參考文獻 92



[1]L. M. Fu and C. H. Lin, A rapid DNA digestion system, Biomedical Microdevices, vol. 9, pp. 277-286, Apr 2007.
[2]K. Ohno, K. Tachikawa, and A. Manz, Microfluidics: Applications for analytical purposes in chemistry and biochemistry, Electrophoresis, vol. 29, pp. 4443-4453, Nov 2008.
[3]C. H. Tsai, H. H. Hou, and L. M. Fu, An optimal three-dimensional focusing technique for micro-flow cytometers, Microfluidics and Nanofluidics, vol. 5, pp. 827-836, Dec 2008.
[4]H. T. Chen and Y. N. Wang, Optical microflow cytometer for particle counting, sizing and fluorescence detection, Microfluidics and Nanofluidics, vol. 6, pp. 529-537, Apr 2009.
[5]D. Choi, E. Jang, J. Park, and W. G. Koh, Development of microfluidic devices incorporating non-spherical hydrogel microparticles for protein-based bioassay, Microfluidics and Nanofluidics, vol. 5, pp. 703-710, Nov 2008.
[6]N. T. Tran, I. Ayed, A. Pallandre, and M. Taverna, Recent innovations in protein separation on microchips by electrophoretic methods: An update, Electrophoresis, vol. 31, pp. 147-173, Jan 2010.
[7]A. R. Prakash, M. Amrein, and K. Kaler, Characteristics and impact of Taq enzyme adsorption on surfaces in microfluidic devices, Microfluidics and Nanofluidics, vol. 4, pp. 295-305, Apr 2008.
[8]G. D. Aumiller, Chandros.Ea, Tomlinso.Wj, and H. P. Weber, Submicrometer resolution replication of relief patterns for integrated optics, Journal of Applied Physics, vol. 45, pp. 4557-4562, 1974.
[9]F. C. M. Vandepol, D. G. J. Wonnink, M. Elwenspoek, and J. H. J. Fluitman, A thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices, Sensors and Actuators, vol. 17, pp. 139-143, May 1989.
[10]F. C. M. Vandepol, H. T. G. Vanlintel, M. Elwenspoek, and J. H. J. Fluitman, A thermopneumatic micropump based on micro-engineering techniques, Sensors and Actuators a-Physical, vol. 21, pp. 198-202, Feb 1990.
[11]S. Shoji, S. Nakagawa, and M. Esashi, Micropump and sample-injector for integrated chemical analyzing systems, Sensors and Actuators a-Physical, vol. 21, pp. 189-192, Feb 1990.
[12]M. Esashi, A. Nakano, and S. Shoji, Integrated mass flow controller by micromachining of silicon, Extended Abstracts of the 21st Conference on Solid State Devices and Materials, pp. 193-196, 1989 1989.
[13]A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical-analysis systems - a novel concept for chemical sensing, Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, Jan 1990.
[14]V. D. S. Liu, S. Jovanovich, Capillary electrophoresis on microchip, Electrophoresis vol. 21, pp. 41-54, 2000.
[15]D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry, vol. 70, pp. 4974-4984, Dec 1998.
[16]E. Berthier, E. W. K. Young, and D. Beebe, Engineers are from PDMS-land, Biologists are from Polystyrenia, Lab on a Chip, vol. 12, pp. 1224-1237, 2012.
[17]Z. Y. Zhang, P. Zhao, G. Z. Xiao, B. R. Watts, and C. Q. Xu, Sealing SU-8 microfluidic channels using PDMS, Biomicrofluidics, vol. 5, Dec 2011.
[18]B. Cortese, M. C. Mowlem, and H. Morgan, Characterisation of an irreversible bonding process for COC-COC and COC-PDMS-COC sandwich structures and application to microvalves, Sensors and Actuators B-Chemical, vol. 160, pp. 1473-1480, Dec 2011.
[19]S. Massey, A. Duboin, D. Mantovani, P. Tabeling, and M. Tatoulian, Stable modification of PDMS surface properties by plasma polymerization: Innovative process of allylamine PECVD deposition and microfluidic devices sealing, Surface & Coatings Technology, vol. 206, pp. 4303-4309, May 2012.
[20]K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, Integration of chemical and biochemical analysis systems into a glass microchip Analytical Sciences, vol. 19, pp. 15-22, Jan 2003.
[21]J. H. Kang and J. K. Park, Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device, Small, vol. 3, pp. 1784-1791, Oct 2007.
[22]M. Karle, J. Miwa, G. Roth, R. Zengerle, and F. von Stetten, A novel microfluidic platform for continuous DNA extraction and purification using laminar flow magnetophoresis, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems. MEMS 2009, pp. 276-279, 2009 2009.
[23]H. Morgan, M. P. Hughes, and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophysical Journal, vol. 77, pp. 516-525, Jul 1999.
[24]M. Yamada, M. Nakashima, and M. Seki, Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel, Analytical Chemistry, vol. 76, pp. 5465-5471, Sep 2004.
[25]M. Yamada and M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics, Lab on a Chip, vol. 5, pp. 1233-1239, 2005.
[26]M. Yamada and M. Seki, Microfluidic particle sorter employing flow splitting and recombining, Analytical Chemistry, vol. 78, pp. 1357-1362, Feb 2006.
[27]J. L. Zhang, Q. Q. Guo, M. Liu, and J. Yang, A lab-on-CD prototype for high-speed blood separation, Journal of Micromechanics and Microengineering, vol. 18, Dec 2008.
[28]H. Y. Zheng, Y. C. Lam, C. Sundarraman, and D. V. Tran, Influence of substrate cooling on femtosecond laser machined hole depth and diameter, Applied Physics a-Materials Science & Processing, vol. 89, pp. 559-563, Nov 2007.
[29]D. Day and M. Gu, Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses, Optics Express, vol. 13, pp. 5939-5946, Aug 2005.
[30]X. Zhao and Y. C. Shin, Femtosecond laser drilling of high-aspect ratio microchannels in glass, Applied Physics a-Materials Science & Processing, vol. 104, pp. 713-719, Aug 2011.
[31]Y. Feng, Z. Q. Liu, and X. S. Yi, Co-occurrence of photochemical and thermal effects during laser polymer ablation via a 248-nm excimer laser, Applied Surface Science, vol. 156, pp. 177-182, Feb 2000.
[32]J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, et al., All-polymer photonic devices using excimer laser micromachining, Ieee Photonics Technology Letters, vol. 16, pp. 509-511, Feb 2004.
[33]S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques, Journal of Materials Processing Technology, vol. 187, pp. 326-330, Jun 2007.
[34]H. Qi, X. S. Wang, T. Chen, X. M. Ma, and T. C. Zuo, Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 1027-1030, Jul 2009.
[35]T. F. Hong, W. J. Ju, M. C. Wu, C. H. Tai, C. H. Tsai, and L. M. Fu, Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser, Microfluidics and Nanofluidics, vol. 9, pp. 1125-1133, Dec 2010.
[36]L. Romoli, G. Tantussi, and G. Dini, Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices, Optics and Lasers in Engineering, vol. 49, pp. 419-427, Mar 2011.
[37]H. Klank, J. P. Kutter, and O. Geschke, CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip, vol. 2, pp. 242-246, 2002.
[38]D. Snakenborg, H. Klank, and J. P. Kutter, Microstructure fabrication with a CO2 laser system, Journal of Micromechanics and Microengineering, vol. 14, pp. 182-189, Feb 2004.
[39]J. Y. Cheng, C. W. Wei, K. H. Hsu, and T. H. Young, Direct-write laser micromachining and universal surface modification of PMMA for device development, Sensors and Actuators B-Chemical, vol. 99, pp. 186-196, Apr 2004.
[40]C. K. Chung, Y. C. Lin, and G. R. Huang, Bulge formation and improvement of the polymer in CO2 laser micromachining, Journal of Micromechanics and Microengineering, vol. 15, pp. 1878-1884, Oct 2005.
[41]Z. K. Wang, H. Y. Zheng, R. Y. H. Lim, Z. F. Wang, and Y. C. Lam, Improving surface smoothness of laser-fabricated microchannels for microfluidic application, Journal of Micromechanics and Microengineering, vol. 21, Sep 2011.
[42]L. W. Luo, C. Y. Teo, W. L. Ong, K. C. Tang, L. F. Cheow, and L. Yobas, Rapid prototyping of microfluidic systems using a laser-patterned tape, Journal of Micromechanics and Microengineering, vol. 17, pp. N107-N111, Dec 2007.
[43]H. S. Chuang and S. T. Wereley, Rapid patterning of slurry-like elastomer composites using a laser-cut tape, Journal of Micromechanics and Microengineering, vol. 19, Sep 2009.
[44]T. G. Henares, F. Mizutani, and H. Hisamoto, Current development in microfluidic immunosensing chip, Analytica Chimica Acta, vol. 611, pp. 17-30, Mar 2008.
[45]X. Q. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane), Journal of Chromatography B, vol. 762, pp. 117-125, Oct 2001.
[46]S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells, Journal of Biomedical Materials Research Part A, vol. 72A, pp. 10-18, Jan 2005.
[47]H. M. L. Tan, H. Fukuda, T. Akagi, and T. Ichiki, Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet, Thin Solid Films, vol. 515, pp. 5172-5178, Apr 2007.
[48]K. Efimenko, W. E. Wallace, and J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, Journal of Colloid and Interface Science, vol. 254, pp. 306-315, Oct 2002.
[49]Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Chen, In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems, Lab on a Chip, vol. 8, pp. 352-357, 2008.
[50]A. J. Wang, J. J. Xu, Q. Zhang, and H. Y. Chen, The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis, Talanta, vol. 69, pp. 210-215, Mar 2006.
[51]G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic Mobilities and hydrophilic channel wall characteristics, Analytical Chemistry, vol. 77, pp. 1414-1422, Mar 2005.
[52]J. W. Zhou, A. V. Ellis, and N. H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices, Electrophoresis, vol. 31, pp. 2-16, Jan 2010.
[53]C. Jin, S. M. McFaul, S. P. Duffy, X. Y. Deng, P. Tavassoli, P. C. Black, et al., Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments, Lab on a Chip, vol. 14, pp. 32-44, 2014.
[54]D. Di Carlo, Inertial microfluidics, Lab on a Chip, vol. 9, pp. 3038-3046, 2009.
[55]S. Yang, A. Undar, and J. D. Zahn, A microfluidic device for continuous, real time blood plasma separation, Lab on a Chip, vol. 6, pp. 871-880, 2006.
[56]黃興閎, 背向階梯流場之剪流層非穩態特性研究 碩士,國立清華大學,動力機械工程學系,GH000913711, 2004.
[57]G. Biswas, M. Breuer, and F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers, Journal of Fluids Engineering-Transactions of the Asme, vol. 126, pp. 362-374, May 2004.
[58]D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 18892-18897, Nov 2007.
[59]D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, and M. Toner, Equilibrium separation and filtration of particles using differential inertial focusing, Analytical Chemistry, vol. 80, pp. 2204-2211, Mar 2008.
[60]A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab on a Chip, vol. 8, pp. 1906-1914, 2008.
[61]M. X. y. LIU Hai lin, YUAN Li,HUANG Yun, Molecule Self-assembly Technology and Its Research Advances, Journal of Materials Science & Engineering, vol. Vol 22, No 2, 2004.
[62]Z. W. Zhang, X. J. Feng, Q. M. Luo, and B. F. Liu, Environmentally friendly surface modification of PDMS using PEG polymer brush, Electrophoresis, vol. 30, pp. 3174-3180, Sep 2009.

電子全文 電子全文(網際網路公開日期:20240801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top