|
[1]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 20, 2059–2062, (1987). [2]S. John, “Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 23, 2486–2489, (1987). [3]E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett. 63, 18, 1950–1953, (1989). [4]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press, (2011). [5]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 25, 3152–3155, (1990). [6]M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures, Opt. Commun. 80, 3–4, 199–204, (1991). [7]M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice, Phys. Rev. B 44, 16, 8565–8571, (1991). [8]H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method, Phys. Rev. B 45, 24, 13962–13972, (1992). [9]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures, Comput. Phys. Commun. 85, 2, 306–322, (1995). [10]A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, 3 edition. Boston: Artech House, (2005). [11]X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves, Phys. Rev. B 47, 8, 4161–4167, (1993). [12]J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations, Phys. Rev. Lett. 69, 19, 2772–2775, (1992). [13]R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials, Phys. Rev. B 48, 11, 8434–8437, (1993). [14]K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures, Solid State Commun. 89, 5, 413–416, (1994). [15]J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 19, 1547-1549, (1996). [16]P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency, Phys. Rev. B 54, 11, 7837–7842, (1996). [17]R. Moussa, L. Salomon, F. de Fornel, and H. Aourag, “Numerical study on localized defect modes in two-dimensional lattices: a high Q-resonant cavity, Phys. B Condens. Matter 338, 1–4, 97–102, (2003). [18]O. Painter, K. Srinivasan, J. D. O’Brien, A. Scherer, and P. D. Dapkus, “Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides, J. Opt. Pure Appl. Opt. 3, 6, S161, (2001). [19]K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic Crystal lasers by ICP etching and control of resonant mode in point and line composite defects, IEEE J. Sel. Top. Quantum Electron. 9, 5, 1347–1354, (2003). [20]J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED, Phys. Rev. E 65, 1, 016608, (2001). [21]H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett. 79, 19, 3032–3034, (2001). [22]T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities, Appl. Phys. Lett. 79, 26, 4289–4291, (2001). [23]Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs, Opt. Express 12, 17, 3988–3995, (2004). [24]H. Altug and J. Vučković, “Photonic crystal nanocavity array laser, Opt. Express 13, 22, 8819–8828, (2005). [25]M. Xing, W. Zheng, Y. Zhang, G. Ren, X. Du, K. Wang, and L. Chen, “The whispering gallery mode in photonic crystal ring cavity, SPIE 6984, 698438-1-4, (2008). [26]J. W. Strutt, The Theory of Sound. New York: Dover,Lord Rayleigh, (1945). [27]L. Rayleigh, “The problem of the whispering gallery, Phil Mag. 20, 1001–1004, (1910). [28]http://zh.wikipedia.org/w/index.php?title=Image:StPaulsCathedralSouth.jpg&variant=zh-tw. [29]G. Liu, Y. Ning, T. Li, J. Cui, Y. Zhang, X. Zhang, Z. Wang, and L. Wang, “Central hole effect on Whispering-Gallery-Mode of triangular lattice photonic crystal microcavity, SPIE 7135, 71353K-7, (2008). [30]H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities, Appl. Phys. Lett. 83, 21, 4294–4296, (2003). [31]H.-Y. Ryu, M. Notomi, G.-H. Kim, and Y.-H. Lee, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity, Opt. Express 12, 8, 1708–1719, (2004). [32]A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides, Phys. Rev. Lett. 77, 18, 3787–3790, (1996). [33]J. Yonekura, M. Ikeda, and T. Baba, “Analysis of Finite 2-D Photonic Crystals of Columns and Lightwave Devices Using the Scattering Matrix Method, J. Light. Technol. 17, 8, 1500, (1999). [34]S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals, J. Opt. Soc. Am. B 18, 2, 162–165, (2001). [35]Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin “Micro displacement sensor based on line-defect resonant cavity in photonic crystal Optics Express 14, 1, 298-305, (2006). [36]A. Sharkawy, S. Shi and D.W. Prather “Electro-optical switching using coupled photonic crystal waveguides Optics Express 10, 20, 1048-1059, (2002). [37]A. Shinya, S. Mitsugi, E. Kuramochi and M. Notomi “Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic crystal waveguide Optics Express 13, 11, 4202-4209, (2005). [38]J. Li, Y.-S. Wang, and C. Zhang, “Finite element method for analysis of band structures of phononic crystal slabs with Archimedean-like tilings, IEEE IUS, 1548–1551, (2009). [39]S. David, A. Chelnokov, and J.-M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings, Opt. Lett. 25, 14, 1001–1003, (2000). [40]J.-Y. Chen, J.-Y. Yeh, and W.-T. Chen, “Analysis of Photonic Band Gaps in Two-Dimensional Archimedean Tiling Patterns, J. Eng. Technol. Educ. 10(4), 363-396, (2013). [41]Y. Wang, “Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings, EPL Europhys. Lett. 74, 2, 261, (2006). [42]S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals, Appl. Phys. Lett. 78, 20, 3015–3017, (2001). [43]H. Takeda and K. Yoshino, “Properties of two-dimensional photonic crystals in elastomers, Phys. Rev. B 66, 11, 115207, (2002). [44]N. Malkova, S. Kim, and V. Gopalan, “Strain tunable light transmission through a 〖90 〗^° bend waveguide in a two-dimensional photonic crystal, Appl. Phys. Lett. 83, 8, 1509–1511, (2003). [45]P. Halevi and F. Ramos-Mendieta, “Tunable Photonic Crystals with Semiconducting Constituents, Phys. Rev. Lett. 85, 9, 1875–1878, (2000). [46]M. S. Kushwaha and G. Martinez, “Magnetic-field-dependent band gaps in two-dimensional photonic crystals, Phys. Rev. B 65, 15, 153202, (2002). [47]C.-Y. Liu, “Tunable ultracompact electro-optical photonic crystal ring resonator, J. Mod. Opt. 60, 16, 1337–1342, (2013). [48]H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature, Opt. Commun. 219, 1–6, 177–182, (2003). [49]S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection, Phys. Rev. B 66, 16, 161102, (2002). [50]N. C. Panoiu, M. Bahl, and R. M. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter, Opt. Express 12, 8, 1605–1610, (2004). [51]H.-B. Lin, R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible, Opt. Lett. 23, 2, 94–96, (1998). [52]A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals, Phys. Rev. B 57, 5, 2841–2848, (1998). [53]S. Pu, S. Dong, and J. Huang, “Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides, J. Opt. 16, 4, 045102, (2014). [54]M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photoniccrystal waveguides using microfluidic infiltration, Opt. Express 17, 3, 1628–1635, (2009). [55]Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator, Lab. Chip 14, 16, 3004, (2014). [56]Y.-Y. Wang and L.-W. Chen, “Tunable negative refraction photonic crystals achieved by liquid crystals, Opt. Express 14, 22, 10580–10587, (2006). [57]Y.-Y. Wang, J.-Y. Chen, and L.-W. Chen, “Optical switches based on partial band gap and anomalous refraction in photonic crystals modulated by liquid crystals, Opt. Express 15, 16, 10033–10040, (2007). [58]C.-Y. Liu and L.-W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation, Opt. Express 12, 12, 2616, (2004). [59]J. Li, J. He, and Z. Hong, “Terahertz wave switch based on silicon photonic crystals, Appl. Opt. 46, 22, 5034–5037, (2007). [60]S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations, Opt. Express 11, 2, 167, (2003). [61]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14, 802-807, (1966). [62]J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 2, 185–200, (1994). [63]Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propag. 43, 12, 1460–1463, (1995). [64]S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propag. 44, 12, 1630–1639, (1996). [65]J. D. Jackson,Classical Electrodynamics Third Edition, 3 edition (Wiley, New York,1998) [66]H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals, J. Appl. Phys. 93, 7, 3906–3911, (2003). [67]A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals, Phys. Rev. B 67, 16, 165210, (2003). [68]V. Dmitriev and G. Portela, “A new optical component: Nonreciprocal three-way divider based on magneto-optical resonator, IEEE, 1–5, (2013). [69]V. Dmitriev, M. N. Kawakatsu, and G. Portela, “Compact optical switch based on 2D photonic crystal and magneto-optical cavity, Opt. Lett. 38, 7, 1016–1018, (2013). [70]Q. Wang, Z. Ouyang, K. Tao, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal, Phys. Lett. A 376, 4, 646–649, (2012). [71]Qingjie Wang, Zhuoyuan Wang, Yingying Wang, Lingong Li, Lang Wang, and S. Fan, “Design of four-channel photonic crystal filter based on gyromagnetic materials, 410–413, (2011). [72]A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials. CRC Press,(1997). [73]M. Vasiliev, K. E. Alameh, V. I. Belotelov, V. A. Kotov, and A. K. Zvezdin, “Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices, J. Light. Technol. 24, 5, 2156, (2006). [74]H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips, Phys. Rev. A 78, 2, 023804, (2008). [75]D. P. Wachter, “Refractive index and dispersion of the Europium-Chalcogenides, Phys. Kondens. Mater. 8, 1, 80–86, (1968). [76]J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, “INFRARED TRANSMISSION, MAGNETIC BIREFRINGENCE, AND FARADAY ROTATION IN EuO, Appl. Phys. Lett. 14, 2, 49–51, (1969).
|