跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王宇宏
研究生(外文):Yu-HongWang
論文名稱:磁性光子晶體設計與色散分析
論文名稱(外文):Dispersion Analysis and Design of Magneto-Photonic Crystals
指導教授:陳聯文
指導教授(外文):Lien-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:117
中文關鍵詞:磁光材料阿基米德晶格迴音廊模態
外文關鍵詞:Magneto-optical materialswhispering-gallery-modeArchimedean tilings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近二十年來出現一個稱為光子晶體的名詞,光子晶體的本質為一週期結構,通常由兩種或兩種以上的介電材料所組成,透過適當的設計,光子晶體可以擁有隔絕電磁波傳遞的能力,因與電子能階中存在的電子能隙現象相似,人們稱之為光子能隙。若將缺陷引入光子晶體當中,即移除一個或多個填充物,會造成光子晶體的週期性被破壞,進而產生缺陷模態,若為點缺陷,則可形成共振腔,具有侷限能量的能力,若為線缺陷,則可形成光波導,使得原本不能通過結構的頻率得以通過。在選定材料、填充方式與幾何尺寸之後,光子晶體的色散特性即為固定,若欲調整其光學性質,則須重新製作整個結構,在應用上相當不便,因此有學者提出利用具有可調性的材料組成光子晶體,將可以避免掉這個問題,磁光材料即屬於可調性材料的一環,透過外加磁場的方式,可以改變磁光材料的材料參數,進而影響光子晶體的光學性質。本文將磁光材料與阿基米德晶格相結合,分析光子晶體在不同尺寸與填充方式下的色散特性,藉以求得最佳的設計方式,而外加磁場對於色散性質的改變亦屬於我們討論的範疇。我們緊接著利用阿基米德晶格本身的對稱性,設計一環形共振腔,透過平面波展開法與有限元素軟體分析其共振頻率與電磁場分佈,在引入磁場這個變因之後,探討其造成的模態分裂現象,此外,我們改變共振腔內部的結構藉以優化共振腔的效能。文末,我們與一般常見介電材料所組成的光子晶體相互比較,羅列其優缺。
SUMMARY

We numerically analyze photonic crystals with Archimedean tilings arrangement, which were consisted of dielectric materials and magneto-optical (MO) materials. In the beginning, the dispersion curves of three different type of photonic crystals were calculated by plane wave expansion method. Among them, the one which is composed of air holes in the MO background is suitable for applications. We futher remove six air holes of the photonic crystal to form a ring cavity, and the whispering-gallery-mode is observed in it. When the magnetic field is applied along the out-of-plane direction, the permittivity of MO materials will be changed and the resonant frequency of whispering-gallery-mode will split. Besides, we introduce different size of circular hole and ring-shape hole into the center of the ring cavity to optimize the efficacy. Finally, a common photonic crystal which is consisted of air holes in the silicon background at the same filling ratio is used to compare the performance.

Key words: Magneto-optical materials, whispering-gallery-mode, Archimedean tilings

INTRODUCTION

Over past decades, people pay a lot of attention to a kind of periodic dielectric structure named photonic crystal. In certain regions of the frequency, the optical wave can not pass the photonic crystals, and these regions are called photonic band gaps. When point defects or line defects are introduced into the perfect photonic crystals, it will cause highly localized resonance and guide modes relatively at the frequency within the band gap, and thus many novel applications such as sensors, filters and coupler are realized.
Archimedean tilings are constituted by regular convex polygons which are not identical necessarily. There are not any intervals or overlaps between these regular convex polygons, therefore, the vertices are all identical. Although there exists many kinds of Archimedean tilings, once the parameters of photonic crystal are determined, the wave propagation behaviors are fixed. Thus, how to tune the properties of photonic crystals becomes an important issue. Magneto-optical materials are one kind of tunable materials. When the external magnetic field is employed, the permittivity or the permeability will be changed. Based on this phenomenon, tunable photonic crystal devices can be designed. In this work, we combine photonic crystals with Archimedean tilings, and the wave propagation properties, i.e. width of band gaps and resonant frequencies of photonic crystal which is composed of magneto-optical materials with Archimedean tilings arrangement are studied. The influence of external magnetic field is analyzed, too. Computations are performed by using plane wave expansion and finite element software.

MATERIALS AND METHODS

In this section, we will illustrate the plane wave expansion method which is used to calculate the dispersion curves of photonic crystals.
The Maxwell equations are shown below:
(1)
(2)
Where E ⃑ is the intensity of electric field, H ⃑ is the intensity of magnetic field, ε _r is the relative permittivity, ε _0 is permittivity in vacuum, and μ _0 is permeability in vacuum.
Assume that the electric field and the magnetic field are both time harmonic functions and can be defined as:
(3)
(4)
When we introduce equations (3) and (4) into equation (1) and (2), the Helmholtz’s equation can be derived, as shown below:
(5)
According to Bloch’s theorem, the magnetic field in the periodic structure can be expressed as:
(6)
Where G ⃑ is the reciprocal lattice vector, k ⃑ is Bloch’s wavevector, and (e _λ ) ̂ are two unit vectors which are perpendicular to (k ⃑+G ⃑).
Since 1 /(ε _r ( r ⃑) ) is a periodic function, it can be expanded into Fourier series, as shown below:
(7)
(8)
Where Ω represents the unit cell, and V is the volume of the unit cell.
By substituting equation (7) and (8) into equation (5), we can obtain an eigenfunction defined as:
(9)
Equation (9) can be separated into two different eigenfunctions as shown as equation (10) and (11) relatively according to E-polarization(TE) and H-polarization(TM).
(10)
(11)
If the external magnetic field is applied along z direction, the permittivity of the MO materials can be defined as[72]:
ε ̂= [■(ε _xx &ε _xy &0 @ε _yx &ε _yy &0 @0 &0 &ε _zz )] (12)
And the equation (9) will be modified as shown below:
∑_(G ^' )▒|k ⃑+ G ⃑ ||k ⃑+ G ⃑^' |[■(e ̂_2 ∙κ( G ⃑-G ⃑^' ) e ̂_2 ^' &-e ̂_2 ∙κ( G ⃑-G ⃑^' ) e ̂_1 ^' @-e ̂_1 ∙κ( G ⃑-G ⃑^' ) e ̂_2 ^' &e ̂_1 ∙κ( G ⃑-G ⃑^' ) e ̂_1 ^' )]{■(h _(1, G ^' )@h _(2, G ^' ) )} = ω ^2 /c ^2 {■(h _(1, G ^' )@h _(2, G ^' ) )} (13)
Equation (13) can be separated into two different eigenfunctions as shown as equation (14) and (15) relatively according to E-polarization(TE) and H-polarization(TM).
∑_(G ^' )▒〖H ⃑_k ^TM (G ⃑, G ⃑^' ) h _(1, G ⃑^' ) = ω ^2 /c ^2 h _(1, G ⃑ ) 〗 (14)
H ⃑_k ^TM (G ⃑, G ⃑^' )=ε _xx ^-1 (G ⃑-G ⃑^' )(k _y + G _y )(k _y + G _y ^' )
+ ε _yy ^-1 (G ⃑-G ⃑^' )(k _x + G _x )(k _x + G _x ^' )
-ε _xy ^-1 (G ⃑-G ⃑^' )(k _y + G _y )(k _x + G _x ^' )
-ε _yx ^-1 (G ⃑-G ⃑^' )(k _x + G _x )(k _y + G _y ^' )
∑_(G ^' )▒〖H ⃑_k ^TE (G ⃑, G ⃑^' ) h _(2, G ⃑^' ) = ω ^2 /c ^2 h _(2, G ⃑ ) 〗 (15)
H ⃑_k ^TE (G ⃑, G ⃑^' )=ε _zz ^-1 ( G ⃑-G ⃑^' ) |k ⃑+ G ⃑ ||k ⃑+ G ⃑^' |
The two equations above indicate that the off-diagonal elements of the dielectric tensor will affect the dispersion relationship of photonic crystals only when the optical wave is TM polarized. Thus, we just discuss the behavior of TM polarized waves.

RESULTS AND DISCUSSION

The unit cell of the photonic crystal with Archimedean tilings arrangement is shown in figure 1. It is consisted of air holes arranged in MO background whose permittivity is 4.75. The largest width of band gap whose value is 0.025(a/λ) appears when the radius of air holes are 0.38a,as shown in figure 2, where a is the side of the regular polygon. We futher remove six air holes of the photonic crystal to creat a ring cavity, as shown in figure 3. The plane wave is incident from left, and there exists five eigenmode in the range of band gap. Moreover, the whispering-gallery-mode occurs when the normalized frequency is 0.351673(a/λ), and its quality factor is 3885. If the wavelength of this frequency is designed to locate at 1550 nm, then the value of side of polygon is 545.093 nm. When applying an external magnetic field to the photonic crystal, the resonant frequency of the whispering-gallery-mode will separate. Figure 4 shows the wavelength spectrum when g is 0.4. As long as the magnetic field is large enough, the two resonant peak can be identified, and the quality factor can maintain at a high level. By appropriately introducing circular hole or ring-shape hole into the center of the ring cavity, the performances of the cavity will be better. Finally, a common photonic crystal which is consisted of air holes arranged in silicon background is analyzed. Because the contrast of impedance between silicon and air is larger than that between MO materials and air. Thus, the value of quality factor and separation of the latter are more higher than the former.
摘要 I
SUMMARY II
誌謝 IX
目錄 X
表目錄 XIII
圖目錄 XV
符號說明 XX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 光子晶體能隙 2
1-2-2 光子晶體共振腔、迴音廊模態與光波導 3
1-2-3 阿基米德晶格(Archimedean tilings) 4
1-2-4 可調式光子晶體 5
1-3 本文架構 6
第二章 數值方法 10
2-1 前言 10
2-2 固態物理學中的晶格 10
2-2-1 真實空間與倒晶格空間 11
2-2-2 布洛赫定理(Bloch theorem) 12
2-3 平面波展開法 14
2-3-1 正方晶格(square lattice) 15
2-3-2 三角晶格(triangular lattice) 16
2-3-3超晶胞與光子晶體光波導 17
2-4 有限時域差分法 18
2-4-1 完美匹配吸收層(perfectly matched layer) 20
2-5 共振腔品質因子 24
第三章 磁光材料簡介 30
3-1 前言 30
3-2 磁光材料性質 31
3-3 磁性光子晶體與平面波展開法 32
3-4 外加磁場與共振頻率分裂之關係 33
第四章 磁性光子晶體色散分析 36
4-1 前言 36
4-2 能帶結構 37
4-2-1 磁光材料背景、空氣圓柱 37
4-2-2 空氣背景、磁光材料圓柱 38
4-2-3 磁光材料背景、鍺圓柱 39
4-3 缺陷模態與特徵模態 40
4-4 模擬電磁波實際入射情形與計算品質因子 41
4-5 共振腔中心填充空氣圓洞與空氣環洞 42
4-6 含磁光材料光子晶體共振腔 43
4-6-1 矽背景阿基米德(3,4,6,4)晶格能帶結構 44
4-6-2 缺陷模態與特徵模態 44
4-6-3模擬電磁波實際入射情形與計算品質因子 45
4-6-4氣體感測器 46
4-7 可調式光子能帶 47
4-7-1 磁光材料背景、空氣圓柱 47
4-7-2 空氣背景、磁光材料圓柱 48
4-7-3 磁光材料背景、鍺圓柱 49
第五章 綜合結論與未來展望 109
5-1 綜合結論 109
5-2 未來展望 110
參考文獻 112
[1]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 20, 2059–2062, (1987).
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 23, 2486–2489, (1987).
[3]E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett. 63, 18, 1950–1953, (1989).
[4]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press, (2011).
[5]K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 25, 3152–3155, (1990).
[6]M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures, Opt. Commun. 80, 3–4, 199–204, (1991).
[7]M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice, Phys. Rev. B 44, 16, 8565–8571, (1991).
[8]H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method, Phys. Rev. B 45, 24, 13962–13972, (1992).
[9]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures, Comput. Phys. Commun. 85, 2, 306–322, (1995).
[10]A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, 3 edition. Boston: Artech House, (2005).
[11]X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves, Phys. Rev. B 47, 8, 4161–4167, (1993).
[12]J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations, Phys. Rev. Lett. 69, 19, 2772–2775, (1992).
[13]R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials, Phys. Rev. B 48, 11, 8434–8437, (1993).
[14]K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures, Solid State Commun. 89, 5, 413–416, (1994).
[15]J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 19, 1547-1549, (1996).
[16]P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency, Phys. Rev. B 54, 11, 7837–7842, (1996).
[17]R. Moussa, L. Salomon, F. de Fornel, and H. Aourag, “Numerical study on localized defect modes in two-dimensional lattices: a high Q-resonant cavity, Phys. B Condens. Matter 338, 1–4, 97–102, (2003).
[18]O. Painter, K. Srinivasan, J. D. O’Brien, A. Scherer, and P. D. Dapkus, “Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides, J. Opt. Pure Appl. Opt. 3, 6, S161, (2001).
[19]K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic Crystal lasers by ICP etching and control of resonant mode in point and line composite defects, IEEE J. Sel. Top. Quantum Electron. 9, 5, 1347–1354, (2003).
[20]J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED, Phys. Rev. E 65, 1, 016608, (2001).
[21]H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett. 79, 19, 3032–3034, (2001).
[22]T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities, Appl. Phys. Lett. 79, 26, 4289–4291, (2001).
[23]Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs, Opt. Express 12, 17, 3988–3995, (2004).
[24]H. Altug and J. Vučković, “Photonic crystal nanocavity array laser, Opt. Express 13, 22, 8819–8828, (2005).
[25]M. Xing, W. Zheng, Y. Zhang, G. Ren, X. Du, K. Wang, and L. Chen, “The whispering gallery mode in photonic crystal ring cavity, SPIE 6984, 698438-1-4, (2008).
[26]J. W. Strutt, The Theory of Sound. New York: Dover,Lord Rayleigh, (1945).
[27]L. Rayleigh, “The problem of the whispering gallery, Phil Mag. 20, 1001–1004, (1910).
[28]http://zh.wikipedia.org/w/index.php?title=Image:StPaulsCathedralSouth.jpg&variant=zh-tw.
[29]G. Liu, Y. Ning, T. Li, J. Cui, Y. Zhang, X. Zhang, Z. Wang, and L. Wang, “Central hole effect on Whispering-Gallery-Mode of triangular lattice photonic crystal microcavity, SPIE 7135, 71353K-7, (2008).
[30]H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities, Appl. Phys. Lett. 83, 21, 4294–4296, (2003).
[31]H.-Y. Ryu, M. Notomi, G.-H. Kim, and Y.-H. Lee, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity, Opt. Express 12, 8, 1708–1719, (2004).
[32]A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides, Phys. Rev. Lett. 77, 18, 3787–3790, (1996).
[33]J. Yonekura, M. Ikeda, and T. Baba, “Analysis of Finite 2-D Photonic Crystals of Columns and Lightwave Devices Using the Scattering Matrix Method, J. Light. Technol. 17, 8, 1500, (1999).
[34]S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals, J. Opt. Soc. Am. B 18, 2, 162–165, (2001).
[35]Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin “Micro displacement sensor based on line-defect resonant cavity in photonic crystal Optics Express 14, 1, 298-305, (2006).
[36]A. Sharkawy, S. Shi and D.W. Prather “Electro-optical switching using coupled photonic crystal waveguides Optics Express 10, 20, 1048-1059, (2002).
[37]A. Shinya, S. Mitsugi, E. Kuramochi and M. Notomi “Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic crystal waveguide Optics Express 13, 11, 4202-4209, (2005).
[38]J. Li, Y.-S. Wang, and C. Zhang, “Finite element method for analysis of band structures of phononic crystal slabs with Archimedean-like tilings, IEEE IUS, 1548–1551, (2009).
[39]S. David, A. Chelnokov, and J.-M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings, Opt. Lett. 25, 14, 1001–1003, (2000).
[40]J.-Y. Chen, J.-Y. Yeh, and W.-T. Chen, “Analysis of Photonic Band Gaps in Two-Dimensional Archimedean Tiling Patterns, J. Eng. Technol. Educ. 10(4), 363-396, (2013).
[41]Y. Wang, “Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings, EPL Europhys. Lett. 74, 2, 261, (2006).
[42]S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals, Appl. Phys. Lett. 78, 20, 3015–3017, (2001).
[43]H. Takeda and K. Yoshino, “Properties of two-dimensional photonic crystals in elastomers, Phys. Rev. B 66, 11, 115207, (2002).
[44]N. Malkova, S. Kim, and V. Gopalan, “Strain tunable light transmission through a 〖90 〗^° bend waveguide in a two-dimensional photonic crystal, Appl. Phys. Lett. 83, 8, 1509–1511, (2003).
[45]P. Halevi and F. Ramos-Mendieta, “Tunable Photonic Crystals with Semiconducting Constituents, Phys. Rev. Lett. 85, 9, 1875–1878, (2000).
[46]M. S. Kushwaha and G. Martinez, “Magnetic-field-dependent band gaps in two-dimensional photonic crystals, Phys. Rev. B 65, 15, 153202, (2002).
[47]C.-Y. Liu, “Tunable ultracompact electro-optical photonic crystal ring resonator, J. Mod. Opt. 60, 16, 1337–1342, (2013).
[48]H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature, Opt. Commun. 219, 1–6, 177–182, (2003).
[49]S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection, Phys. Rev. B 66, 16, 161102, (2002).
[50]N. C. Panoiu, M. Bahl, and R. M. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter, Opt. Express 12, 8, 1605–1610, (2004).
[51]H.-B. Lin, R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible, Opt. Lett. 23, 2, 94–96, (1998).
[52]A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals, Phys. Rev. B 57, 5, 2841–2848, (1998).
[53]S. Pu, S. Dong, and J. Huang, “Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides, J. Opt. 16, 4, 045102, (2014).
[54]M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photoniccrystal waveguides using microfluidic infiltration, Opt. Express 17, 3, 1628–1635, (2009).
[55]Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator, Lab. Chip 14, 16, 3004, (2014).
[56]Y.-Y. Wang and L.-W. Chen, “Tunable negative refraction photonic crystals achieved by liquid crystals, Opt. Express 14, 22, 10580–10587, (2006).
[57]Y.-Y. Wang, J.-Y. Chen, and L.-W. Chen, “Optical switches based on partial band gap and anomalous refraction in photonic crystals modulated by liquid crystals, Opt. Express 15, 16, 10033–10040, (2007).
[58]C.-Y. Liu and L.-W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation, Opt. Express 12, 12, 2616, (2004).
[59]J. Li, J. He, and Z. Hong, “Terahertz wave switch based on silicon photonic crystals, Appl. Opt. 46, 22, 5034–5037, (2007).
[60]S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations, Opt. Express 11, 2, 167, (2003).
[61]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14, 802-807, (1966).
[62]J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 2, 185–200, (1994).
[63]Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propag. 43, 12, 1460–1463, (1995).
[64]S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propag. 44, 12, 1630–1639, (1996).
[65]J. D. Jackson,Classical Electrodynamics Third Edition, 3 edition (Wiley, New York,1998)
[66]H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals, J. Appl. Phys. 93, 7, 3906–3911, (2003).
[67]A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals, Phys. Rev. B 67, 16, 165210, (2003).
[68]V. Dmitriev and G. Portela, “A new optical component: Nonreciprocal three-way divider based on magneto-optical resonator, IEEE, 1–5, (2013).
[69]V. Dmitriev, M. N. Kawakatsu, and G. Portela, “Compact optical switch based on 2D photonic crystal and magneto-optical cavity, Opt. Lett. 38, 7, 1016–1018, (2013).
[70]Q. Wang, Z. Ouyang, K. Tao, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal, Phys. Lett. A 376, 4, 646–649, (2012).
[71]Qingjie Wang, Zhuoyuan Wang, Yingying Wang, Lingong Li, Lang Wang, and S. Fan, “Design of four-channel photonic crystal filter based on gyromagnetic materials, 410–413, (2011).
[72]A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials. CRC Press,(1997).
[73]M. Vasiliev, K. E. Alameh, V. I. Belotelov, V. A. Kotov, and A. K. Zvezdin, “Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices, J. Light. Technol. 24, 5, 2156, (2006).
[74]H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips, Phys. Rev. A 78, 2, 023804, (2008).
[75]D. P. Wachter, “Refractive index and dispersion of the Europium-Chalcogenides, Phys. Kondens. Mater. 8, 1, 80–86, (1968).
[76]J. O. Dimmock, C. E. Hurwitz, and T. B. Reed, “INFRARED TRANSMISSION, MAGNETIC BIREFRINGENCE, AND FARADAY ROTATION IN EuO, Appl. Phys. Lett. 14, 2, 49–51, (1969).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top