跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李榮
研究生(外文):JungLee
論文名稱:以鎳金屬氧化作為氧化鎳電洞傳輸層應用於鈣鈦礦系列太陽能電池之研究
論文名稱(外文):Perovskite based solar cells with nickel oxidized nickel oxide hole transport layer
指導教授:賴韋志
指導教授(外文):Wei-Chih Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:106
中文關鍵詞:甲基銨碘化鉛氧化鎳太陽能電池
外文關鍵詞:perovskitenickel oxidesolar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本論文為以鎳金屬氧化作為氧化鎳電洞傳輸層應用於鈣鈦礦系列太陽能電池之研究。我們進行了不同氧化鎳退火參數來探討其穿透率、功函數以及表面形貌對於主動層的影響,由甲基銨碘化鉛(methylammonium lead iodide)之吸收頻譜得知其能隙約為1.5 eV且在可見光波段有著良好的吸收效應,此外,我們也把試片拿去打UPS藉以了解各個退火溫度之氧化鎳的功函數,如此一來與perovskite的HOMO有更佳的匹配性,進而改善元件的開路電壓值。此外,我們做了一系列的SEM和AFM研究,發現到電洞傳輸層的表面粗糙度與形貌也會對主動層的結晶性扮演著關鍵的角色。
元件結構為:glass/ITO/NiOx/CH3NH3PbI3/PCBM/BCP/Al之有機/無機鈣鈦礦做為主動層之異質接面太陽能電池,我們進行了亮、暗態電流-電壓曲線量測和外部量子效率之量測來探討是否不同電洞傳輸層會有改善元件各個光電特性參數之趨勢。實驗結果與分析將於本論文中詳加說明與討論。
In this work, we present a fabrication of all-solid-state, methylammonium lead iodide (CH3NH3PbI3)/ [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), donor/acceptor bilayer-heterojunction (BHJ) hybrid solar cells. Spinning N, N-dimethylformamide (DMF) solution of equi-molarmethyl ammonium iodide and lead iodide on the substrate forms a thin CH3NH3PbI3 perovskite film. And then, we use thermal to deposit a thin PCBM (acceptor)、BCP(exciton blocking layer) and Al(electrode). The CH3NH3PbI3 perovskite could sereve two functions as light harvester and hole conductors. Besides, perovskite harvests a wide range of light from visible to near-infrared. By varying the annealing temperature of NiOx, we can modulate the work function of hole transport material and find out a better match of perovskite’s HOMO. The best of our devices deliver Voc=0.9V、Jsc=13.13 mA/cm2、FF=65.55%、η=7.75 %、Rs=4.98 Ω*cm2 and Rp=7.2 MΩ.This result proves the formation and function of a hybrid BHJ in the NiOx/ CH3NH3PbI3 perovskite/PC61BM interface to yield the photovoltaic effect under the solar irradiation. We believe this progress may be a good concept for all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.
目錄
摘要 I
Summary II
誌謝 VIII
目錄 IX
圖目錄 XIII
表目錄 XX
第一章 序論 1
1.1 前言 1
1.2 各種太陽能電池的簡介 2
1.2.1 無機太陽能電池 3
1.2.2 有機太陽能電池 4
1.3 甲基銨碘化鉛-鈣鈦礦結構之太陽能電池 9
1.4 研究目的與動機 9
Reference 14
第二章 理論背景 17
2.1 無機太陽能電池原理 17
2.1.1 p-n接面 17
2.1.2 p-i-n接面 19
2.1.3 太陽能電池等效電路 19
2.1.4 太陽能電池之相關參數 22
2.2有機太陽能電池原理 27
2.2.1 太陽能電池結構 27
2.2.2 有機太陽能電池之工作原理 29
Reference 41
第三章 實驗流程與材料介紹 43
3.1 實驗材料 43
3.1.1 ITO 43
3.1.2 PEDOT:PSS 44
3.1.3 氧化鎳 NiOx 44
3.1.4 甲基銨碘化鉛 (methylammonium lead iodide) 44
3.1.5 PCBM 45
3.1.6 BCP 46
3.1.7 Al 46
3.2 實驗儀器 46
3.2.1 紫外光臭氧清潔機(UV-Ozone machine) 46
3.2.2 旋轉塗佈機(Spin Coater) 46
3.2.3 電子束蒸鍍(Electric Beam Evaporator) 47
3.2.4 熱蒸鍍機(Thermal Evaporation) 47
3.2.5 手套箱(glove box) 48
3.2.6 掃描式電子顯微鏡(Scanning Electron Microscope) 48
3.2.7 原子力顯微鏡 49
3.3 試片標準量測條件與測量手法 49
3.3.1 太陽光譜與標準量測光源定義 49
3.3.2 電流-電壓之亮、暗態量測 50
3.3.3 IPCE量測 51
3.4 實驗流程 52
3.4.1 製作流程簡介 52
3.4.2 perovskite-based solar cells製程步驟 53
Reference 60
第四章 結果與討論 62
4.1 甲基銨碘化鉛太陽能電池之結構與能帶示意圖 62
4.2 不同退火氣體對於ITO玻璃之特性分析 63
4.3 不同退火參數的氧化鎳對於PEDOT:PSS之特性分析 64
4.3.1 不同電洞傳輸層之表面形貌分析 64
4.3.2 不同電洞傳輸層之功函數分析 65
4.3.3 Perovskite塗佈於不同電洞傳輸層之PL quenching分析 66
4.4 主動層為甲基銨碘化鉛之太陽能電池元件分析與討論 67
4.4.1 PEDOT:PSS為電洞傳輸層之元件 67
4.4.2 NiOx_350℃為電洞傳輸層之元件 68
4.4.3 NiOx_450℃為電洞傳輸層之元件 69
4.4.4 NiOx_550℃為電洞傳輸層之元件 70
4.4.5 比較與分析 71
4.5 不同主動層塗佈轉速對於元件的分析與討論 71
Reference 104
第五章 結論與未來展望 105
5.1 總結 105
5.2 未來展望 106

[1] 郭禮青,「國內太陽光電發展可期」,工業材料雜誌,203,137,2003。
[2] J. Perlin,Powering The Planet ,Nature, vol. 403 ,no. 27, Jan. 2000,p.p363.
[3] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost, Progress In Photolvoltaics: Research And Application, 9, 123, (2001)
[4] V.D Mihailet, chi, Device Physics of Organic Bulk Heterojunction
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics vol.25, no. 25,1954,p.p676.
[6] M. A. Green, K. Emery, D. L. King, S. Igari,W.Warta, Solar cell efficiency tables (version25), Progress in Photovoltaics vol.13, 2005,p.p. 49.
[7] 莊嘉琛,太陽能工程-太陽能電池篇,台北市:全華科技圖書股份有限公司,2006,第4-75頁。
[8] B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737 (1991)
[9] V. Y. Merritt, H. J. Hovel, “Organic solar cells of hydroxy squarylium,Applied Physics Letters, 29, 414 (1976)
[10] C. W. Tang, “Two layers photovoltaic cell, Applied Physics Letters, 48,183 (1986)
[11] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence,Nature 1985,318,162
[12] P. Peumans, S. R. Forrest,“Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, 79, 126 (2001)
[13] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced
electron transfer from a conducting polymer to buckminsterfullerene,
Science, 258,1474 (1992)
[14] G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet
sensitivity, Applied Physics Letters, 64, 3422 (1994)
[15] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789 (1995)
[16] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, 2.5%efficient organic plastic solar cell, Applied Physics Letters, 78, 841 (2001)
[17] F. Padinger, R. S. Rittberger, N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials, 13, 85 (2003)
[18] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4, 864 (2005)
[19] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable,
efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials,
15, 1617 (2005)
[20] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J.Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency, Advanced
Materials, 18, 789 (2006)
[21] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Applied Physics Letters, 88, 093511 (2006)
[22] E. Mosconi, et al. The Journal of Physical Chemistry C 117 (2013) 13902.
[23] J. H. Im, C. R. Lee, J. W. Lee, S. W.Park and N. G. Park, Nanoscale 3 (10), 4088-4093 (2011).
[24] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K.
Nazeeruddin and M. Gratzel, Journal of the American Chemical Society
134 (42), 17396-17399 (2012).
[25] Donald A. Neamen, “Semiconductor Physics & Devices, Third Edition, Mc Graw Hill, 2003.
[26] 李佳輝,“氮化鎵摻雜錳應用於中間能帶太陽能電池之研究, 國立成功大學光電科學與工程研究所, 碩士論文, (2011).
[27] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[28] Wang.W,Lin, A. S. and Phillips, J. D,“Intermediate-band photovoltaic solar cell based on ZnTe:O , Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
[29]Wang. W, Lin, A. S. and Phillips, J. D.,“Intermediate-band photovoltaic solar cell based on ZnTe:O , Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
[30] Christoph J. Brabec, N. Serdar Sariciftci, Jan C. Hummelen, Plastic Solar Cells,Adv. Funct. Mater. Vol. 11, 2001, p.p. 15 – 26.
[31] Dipl. Ing. Klaus Petritsch, Organic Solar Cell, PhD Thesis ,University of Cambridge, United Kingdom, Austria, 2000.
[32] G. Yu, J. Gao, J. C. Hummelen et al., Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterohunctions ,Science vol. 270, 1995, p.p. 1789-1791.
[33] J.Nelson, Organic photovoltaic films, Current Opinion in Solid State and Materials Science vol. 6, 2002, p.p. 87-95.
[34] Serap Gu¨nes, Helmut Neugebauer, and Niyazi Serdar Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chemical Reviews, Vol. 107, 2007, p.p.1324-1338.
[35] Gilles Dennler, Niyazi Serdar Sariciftci, Flexible Conjugated Polymer-Based Plastic Solar Cell: From Basics to Applications, Proceedings of the IEEE, vol. 93, 2005, p.p. 1430.
[36] Andre´ Moliton and Jean-Michel Nunzi, How to model the behaviour of organic photovoltaic cells, Polymer Int., vol. 55, 2006
[37] G. B. González, T. O. Mason, and J. P. Quintana, JAP 96 7 (2004).
[38] AP:A D.H.Zhang H.L.Ma, Appl. Phys. A 62 487-492 (1996).
[39]. I. Hamberg and C. G. Granqvist PRB ,30,6 (1984).
[40] Jianyong Ouyanga,, Qianfei Xua, Chi-Wei Chua, Yang Yanga,, Gang Lib, Joseph Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) film through solvent treatment, Polymer, vol. 45, 2004, p.p. 8443–8450.
[41]Jun-Yuan Jeng,Yi-Fang Chiang,Mu-Huan Lee,Shin-Rung Peng,
Tzung-Fang Guo,Peter Chen ,and Ten-Chin Wen, Adv. Mater. 2013, 25, 3727–3732
[42]龔鈺茗,表面處理對P 型氮化鎵特性影響之研究暨非螢光粉式混色發光二極體元件之研製,國立台南大學電機工程學系光電工程研究所(2010)
[43] ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,2008.
[44] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang,
“Accurate measurement and characterization of organic solar cells, Advanced Functional Materials, 16, 2016 (2006)
[45] Shuangyong Sun, Teddy Salim, Nripan Mathews, Martial Duchamp,Chris Boothroyd, Guichuan Xing,e Tze Chien Sum and Yeng Ming Lam, Energy Environ. Sci., 2014, 7, 399–407
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊