|
[1] abiquo. [Online]. Available: http://www.abiquo.com/. [2] accelops. [Online]. Available: http://www.accelops.com/. [3] Amazon ec2. [Online]. Available: http://aws.amazon.com/cn/ec2/. [4] appdynamics. [Online]. Available: http://www.appdynamics.com/. [5] Appistry. [Online]. Available: http://www.appistry.com/. [6] Appscale. [Online]. Available: http://www.appscale.com/. [7] At&t cloud 101. [Online]. Available: https://www.synaptic.att.com/ clouduser/html/cloud101/Cloud_101_Details.htm. [8] Bluelock. [Online]. Available: http://www.bluelock.com/. [9] Chelsio communications. [Online]. Available: http://www.chelsio.com/. [10] Einstein@home. [Online]. Available: http://www.einstein-online.info/ spotlights/EaH. [11] How to scale an application. [Online]. Available: http://www.windowsazure. com/en-us/documentation/articles/cloud-services-how-to-scale/. [12] Hp performance optimized datacenter. [Online]. Available: http://www.ndm.net/ hppod/. [13] Openstack. [Online]. Available: http://www.openstack.org/. [14] Oracle’s on demand crm software. [Online]. Available: http://www.oracle.com/ us/products/applications/crmondemand/index.html. [15] Salesforce. [Online]. Available: http://www.salesforce.com/tw/?ir=1. [16] Sap er. [Online]. Available: http://www.sacom/index.html. [17] Smartcloud enterprise. [Online]. Available: http://www-935.ibm.com/ services/us/en/cloud-enterprise/index.html. [18] workday. [Online]. Available: http://www.workday.com/ap/. [19] D. Ardagna and M. Passacantando. Generalized nash equilibria for the service provisioning problem in cloud systems. IEEE Transactions on Service Computing, 6:429–442, 2013. [20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. In Communications of the ACM, volume 53, pages 50–58. April 2010. [21] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. Multi-tenant databases for software as a service: Schema-mapping techniques. ACM SIGMOD International Conference on Management of Data, pages 1195–1206, 2008. [22] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28:755–768, 2012. [23] A. Benlian, M. Koufaris, and T. Hess. Service quality in software-as-a-service: Developing the saas-qual measure and examining its role in usage continuance. Journal of Management Information Systems, 8:85–126, 2011. [24] D. Bruneo. A stochastic model to investigate data center performance and qos in iaas cloud computing systems. IEEE Transactions on Parallel and Distributed System, 25:560–569, 2014. [25] M. Bulmer. Principles of Statistics. Dover Publications, 1979. [26] J. M. Butler, W. Theilmann, and R. Yahyapour. Service Level Agreements for Cloud Computing. Springer, 2011. [27] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya. Optimal multiserver configuration for profit maximization in cloud computing. IEEE Transactions on Parallel and Distributed System, 24:1087–1096, 2013. [28] A. Castro, V. Villagra, B. Fuentes, and B. Costales. A flexible architecture for service management in the cloud. IEEE Transactions on Network and Service Management, 11:116–125, 2014. [29] C. E. Catlett. In search of gigabit applications. In IEEE Communications Magazine. IEEE, 1992. [30] S. Chaisiri, B.-S. Lee, , and D. Niyato. Optimization of resource provisioning cost in cloud computing. IEEE Transactions on Service Computing, 5(2):164–177, 2012. [31] G. Ciardo, R. German, and C. Lindemann. A characterization of the stochastic process underlying a stochastic petri net. IEEE Transactions on Software Engineering, 20:506–515, 1994. [32] Y. Dong, Y. Xia, Q. Zhu, and Y. Huang. A stochastic approach to predict performance of web service composition. In International Symposium on Electronic Commerce and Security, pages 460–464. IEEE, 2009. [33] J. Du, D. J. Dean, Y. Tan, X. Gu, and T. Yu. Scalable distributed service integrity attestation for software-as-a-service clouds. IEEE Transactions on Parallel and Distributed System, PP(99), 2013. [34] T. Genez, L. Bittencourt, and E. Madeira. Workflow scheduling for saas / paas cloud providers considering two sla levels. In Network Operations and Management Symposium (NOMS), pages 906–912. IEEE, 2012. [35] C. Gravier, J. Subercaze, A. Najjar, F. Laforest, X. Serpaggi, and O. Boissier. Context awareness as a service for cloud resource optimization. IEEE Internet Computing, PP:1089–7801, 2013. [36] C. Hirel, B. Tuffin, and K. Trivedi. Spnp: Stochastic petri nets. version 6.0. In B. Haverkort, H. Bohnenkamp, and C. Smith, editors, Computer Performance Evaluation.Modelling Techniques and Tools, volume 1786, pages 354–357. Springer Berlin Heidelberg, 2000. [37] Z. Huang, C. He, L. Gu, and J. Wu. On-demand service in grid: Architecture, design and implementation. In International Conference on Parallel and Distributed Systems. IEEE Computer Society, 2005. [38] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H. Epema. Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Transactions on Parallel and Distributed System, 22:931–945, 2011. [39] L. Jianjie, H. Zhaohui, Y. Xuan, Z. Ran, and X. Chengan. Analysis of process of triage in disaster rescue action using stochastic petri net. In Industrial Control and Electronics Engineering, pages 111–115. IEEE, 2012. [40] M. Jo, Y. W. Ahn, A. Cheng, J. Baek, and H.-H. Chen. An auto-scaling mechanism for virtual resources to support mobile, pervasive, real-time healthcare applications in cloud computing. IEEE Network, 27:62–68, 2013. [41] E. C. Jr, A. Puhalskii, M. Reiman, and E. Wright. Processor-shared buffers with reneging. Performance Evaluation, 19:26 –46, 1994. [42] E. Kao. A semi-markovian population model with application to hospital planning. IEEE Transactions on Systems Man and Cybernetics, 3:327–336, 1973. [43] L. Lei, Y. Han, and Z. Zhong. Performance analysis of device-to-device communications with frequency reuse using stochastic petri nets. In Wireless Networking Symposium, pages 6354–6359. IEEE, 2013. [44] H. Liang, L. X. Cai, D. Huang, X. Shen, and D. Peng. An smdp-based service model for interdomain resource allocation in mobile cloud networks. IEEE Transactions on Vehicular Technology, 61:2222–2232, 2012. [45] H. Liao. Saas business model for software enterprise. In Information Management and Engineering (ICIME), pages 604–607. IEEE, 2010. [46] C. LIN and D. C. Marinescu. Stochastic high-level petri nets and applications. IEEE Transactions on Computers, 37:815–823, 1998. [47] F. Liu, B. Li, Z. Zhou, B. Li, H. Jin, and H. Jiang. On arbitrating the powerperformance tradeoff in saas clouds. IEEE Transactions on Parallel and Distributed System, PP(99):1, 2013. [48] D. Ma. The business model of software-as-a-service. In International Conference on Services Computing. IEEE, 2007. [49] Z. Ma, P. E. Caines, and R. Malhame. Control of admission and routing in loss networks: Hybrid dynamic programming equations. IEEE Transactions on Automatic Control, 55:350–366, 2010. [50] M. Mao and M. Humphrey. A performance study on the vm startup time in the cloud. In International Conference on Cloud Computing, pages 423–430. IEEE, 2012. [51] P. Mell and T. Grance. The nist definition of cloud computing. Technical Report Special Publication 800-145, National Institute of Standards and Technology U.S. Department of Commerce, September 2011. [52] Y. Mo, J. Chen, X. Xie, C. Luo, and L. T. Yang. Cloud-based mobile multimedia recommendation system with user behavior information. Ieee Systems Journal, 8:184–193, 2014. [53] S. Namasivayam. Profiting from business process outsourcing. In IT Pro. IEEE Computer Society, 2004. [54] V. Nikolopoulos, G. Mpardis, I. Giannoukos, I. Lykourentzou, and V. Loumos. Web-based decision-support system methodology for smart provision of adaptive digital energy services over cloud technologies. IET Software, 5:454–465, 2011. [55] Z. Pervez, S. Lee, and Y.-K. Lee. Multi-tenant, secure, load disseminated saas architecture. In International Conference on Advanced Communication Technology, pages 214–219. IEEE, 2010. [56] B. Silva, P. Maciel, J. Brilhante, and A. Zimmermann. Geoclouds modcs: A perfomability evaluation tool for disaster tolerant iaas clouds. In Systems Conference. IEEE, 2014. [57] H. Sun, S. Huang, Y. Fan, and W. Su. Configuration and optimization of virtual business in cloud computing environment. In International Conference on Cloud and Green Computing. IEEE, 2012. [58] W. Tan and M. Zhou. Business and Scientific Workflows: A Web Service-Oriented Approach. Wiley-IEEE Press, 2013. [59] J. Tang, W. P. Tay, and Y. Wen. Dynamic request redirection and elastic service scaling in cloud-centric media networks. IEEE Transactions on Multimedia, PP:1–13, 2014. [60] R. Uhlig, G. Neiger, D. Rodgers, A. L.Santoni, F. C. Martins, A. V. Anderson, S. M.Bennett, A. K. F. H, and L. L. Smith. Intel virtualization technology. In IEEE Computer Society. IEEE, 2005. [61] J. Walz and D. Grier. Time to push the cloud. IT Professional, 12:14–16, 2010. [62] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya. Sla-based resource provisioning for software-as-a-service applications in cloud computing environments. IEEE Tarnsactions on Services Computing, pp:1–30, 2013. [63] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using virtual machine for cloud computing environment. IEEE Transactions on Parallel and Distributed System, 24(6):1107–1117, 2013. [64] B. Yang and L. Wei-Hong. Capability evaluation of air cargo export handling system using stochastic petri net. In Logistics Systems and Intelligent Management, pages 1583–1593. IEEE, 2010. [65] S.-T. Yee and J. A. Ventura. Phase-type approximation of stochastic petri nets for analysis of manufacturing systems. IEEE Transactions on RoboticsA and automation, 16:318–322, 2000
|