跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚文盛
研究生(外文):Wun-ShengYao
論文名稱:在權重社群網路中透過k-匿名來防止鄰居攻擊
論文名稱(外文):K-anonymity against Neighborhood Attacks in Weighted Social Network
指導教授:李忠憲李忠憲引用關係
指導教授(外文):Jung-Shian Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:48
中文關鍵詞:權重社群網路鄰居攻擊隱私保護K-anonymity
外文關鍵詞:Weighted Social NetworkNeighborhood AttacksPrivacy ProtectionK-anonymity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著網路、行動 、資訊爆炸性成長,在這SoLoMo時代,越來越多的社群資料被提供出來做研究。因此個人隱私資料的保護成為必須面對的當務之急。SoLoMo代表有效的整合Social、Local、Mobile,其把我們從虛擬的網路世界拉回現實世界與其做結合。附帶而來的問題是,你與所屬的社群關係更容易被揭露,而在有權重關係的社群網路中更是嚴重。
從巨量資料(Big Data)中分析而決定出最佳的決策,其中一個重要關鍵就是資料的真實性,尤其當資料牽扯到個人隱私時,如何在隱私的保護與資料的可用性取得平衡是一個重大課題。例如對於鄰居攻擊(Neighborhood Attacks),常藉由增加虛擬關係達到K-anonymity作為隱私保護。
本論文跟過往討論的不同點在於如何在有權重的社群網路中,以改變最少權重為原則,優先處理被揭露風險較高且影響力較大的資料,而將相似度較高的資料群一起做匿名處理,減少資料的過度失真,增加其研究的真實性。
With the Internet, mobile and the information expanding rapidly, more and more social network data is provided for research in the SoLoMo times. So the personal privacy protection in social network is an important issue. SoLoMo means to integrate the elements of social, local and mobile effectively, it combines the virtual network and the real world. The problem incident to the times is that the relations between you and your social groups are easy to be revealed, and it gets worst in the weighted social network.
To get the optimal decision from the analysis of the big data, the key is the truth of information. Especially, it is a big issue to get the balance between privacy protection and data usability while the information involving some personal privacy. For example, we usually add virtual relations to achieve K-anonymity protection in order to solve neighborhood attacks.
The thesis is different than others before it. Our goal is to add virtual edges as less as possible, and furthermore, we also changed less weights to achieve k-anonymity. Firstly, processing the more important and easily revealed information, and we handle the similar data at the same time in order to reduce adding virtual relation and increase the data usability.
摘要.......................................................I
ABSTRACT.................................................II
誌謝......................................................IV
CONTENTS..................................................V
LIST OF TABLES...........................................VI
LIST OF FIGURES.........................................VII
CHAPTER 1 INTRODUCTION....................................1
1.1 INTRODUCTION..........................................1
1.2 MOTIVATION AND CONTRIBUTION...........................3
1.3 ORGANIZATION..........................................5
CHAPTER 2 BACKGROUND AND RELATED WORK.....................6
2.1 SOCIAL NETWORK BEHAVIOR...............................6
2.2 PRIVACY PROTECTION....................................8
2.3 AGAINST NEIGHBORHOOD ATTACKS.........................10
CHAPTER 3 SYSTEM ARCHITECTURE............................13
3.1 SYSTEM DESIGN OVERVIEW...............................13
3.2 SYSTEM ALGORITHMS....................................19
CHAPTER 4 PERFORMANCE EVALUATION.........................35
4.1 EXPERIMENT PROCEDURE AND SIMULATION ENVIRONMENT......35
4.2 RESULT ANALYSIS......................................36
CHAPTER 5 CONCLUSION AND FUTURE WORK.....................46
5.1 CONCLUSION...........................................46
5.2 FUTURE WORK..........................................47
REFERENCES...............................................48
[1]Latanya Sweeney, “k-anonymity: A Model for Protecting
Privacy, International Journal on Uncertainty, Fuzziness
and Knowledge-Based Systems, May 2002.
[2]B. Zhou and J. Pei, “Preserving privacy in social
networks against neighborhood attacks, in Proc. of IEEE
ICDE, 2008.
[3]M. Faloutsos et al., “On power-law relationships of the
internet topology, in SIGCOMM’99, 1999.
[4]A. Machanvajjhala, J. Gehrke, D. Kifer, and M.
Venkitasubramaniam, “l-diversity: Privacy beyond k-
anonymity, in Proc. 22nd Intnl. Conf. Data Engg. (ICDE),
page 24, 2006.
[5]N. Li and T. Li, “T-Closeness: Privacy Beyond K-Anonymity
and L-Diversity, Proc. IEEE 23rd Int’l Conf. Data Eng.
(ICDE ‘07), pp. 106-115, 2007.
[6]Bin Zhou and Jian Pei, “Preserving Privacy in Social
Network against Neighborhood Attacks, in Proc. of IEEE
ICDE, 2008.
[7]M. R. Garey, David S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman 1979,ISBN 0-7167-1044-7.
[8]X. Yan and J. Han, “gspan : Graph-based substructure
pattern mining, in Proc. of IEEE ICDE ,2002.
[9]Lei Zou, Lei Chen and M. Tamer Özsu, “K-Automorphism: A
General Framework For Privacy Preserving Network
Publication, Proceedings of the VLDB Endowment vol.2,
August 2009
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top