跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡尚霖
研究生(外文):Shang-Lin Tsai
論文名稱:以水熱法在不同基板成長氧化鋅奈米柱特性研究
論文名稱(外文):Characteristics of ZnO nanorods grown by hydrothermal method on different substrates
指導教授:陳祥陳祥引用關係
指導教授(外文):Hsiang Chen
口試委員:許世昌葉翳民高泉豪
口試委員(外文):Shih-Chang SheiYih-Min YehChyuan-Haur Kao
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用材料及光電工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:氧化鋅奈米柱水熱法
外文關鍵詞:Zinc Oxide nanorodsHydrothermal methods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們使用了非真空法製程製作氧化鋅奈米柱的晶種層的成長在各種導電性和非導電性的基板上。氧化鋅奈米顆粒主要是以低溫和低壓環境下水熱法生長。
經由水熱法成長氧化鋅奈米柱,可以觀察到再結晶的情況發生。我們可以監控氧化鋅奈米柱的結晶和品質情況。舉例來說,當我們在製程過程中添加NaOH時,氧化鋅的形狀會有花狀結構出現,也就能區別出氧化鋅奈米柱的不同。
在實驗結果中說明了氧化鋅奈米柱能夠輕易的附著在基板上已成長好的晶種層上。我們再氧化鋅晶種層與氧化鋅奈米柱的製程上採用了不同的實驗參數。為了要觀察不同條件下的成果,利用掃描電子顯微鏡(SEM)進行觀察在不同基板上的氧化鋅奈米柱成長情況。此外,我們在調整水熱環境中的pH值,並觀察氧化鋅奈米柱的生長情形。另外,我也使用X射線繞射分析儀(XRD)和能量分佈質譜儀(EDX)來觀察的氧化鋅奈米柱材料的性質。

In this thesis, we used a non-vacuum method to produce a seed layer of ZnO nanorods which accretes on the various types of conductive and non-conductive substrate. The main ZnO NPs were grown hydrothermally with low temperature and pressure.
Since we grow ZnO NRs by the hydrothermal method, the recrystallization status can be observed. We can monitor the type of crystallization and the quality of the ZnO NRs. For example, when we add the NaOH in the growing environment, the shape the ZnO become flower-like structure, which is distinct from the ZnO NRs.
The experimental results indicate that, ZnO nanorods can adhere easily because of the seed layer on the substrate. We applied different experimental parameters to grow the ZnO seed layer and the ZnO NRs. To examine the experimental condition, ZnO nanorods with various structures can be observed by scanning electron microscope (SEM). In addition, we adjust the pH value in hydrothermal environment to observe the growth of ZnO nanorods. Furthermore, we perform X-ray diffraction (XRD),and energy dispersive X-ray spectroscopy (EDX) to monitor the material properties of the ZnO NRs.

目次
誌謝 II
論文摘要 IV
Abstract V
圖目次 IX
表目次 X
第一章 緒論 1
1-1前言 1
1-2研究目的 2
1-3文獻回顧 3
1-3-1 溶膠凝膠法與電沉積法製備晶種層對氧化鋅薄膜性質的影響 3
1-3-2 水熱法成長氧化鋅奈米柱 5
1-3-3氧化鋅晶種層旋塗液配方使用與旋轉塗佈轉數選擇 7
第二章 基本理論與奈米材料 11
2-1-1奈米材料 11
2-1-2 奈米材料特性 13
2-1-3氧化鋅物理性質與特性 17
2-1-4 氧化鋅光學性質及壓電特性 19
2-1-5 氧化鋅的應用 19
第三章 製程原理與分析儀器簡介 20
3-1氧化鋅製程方法 20
3-1-1化學氣相沉積(Chemical Vapor Deposition,CVD) 20
3-1-2濺鍍法(Sputtering) 21
3-1-3電化學沉積法(Electro deposition) 22
3-1-4溶膠凝膠法(Sol-gel) 22
3-1-5水熱法(Hydrothermal method) 23
3-1-6旋轉塗佈法 24
3-2量測分析儀器原理介紹 25
3-2-1 X 射線繞射分析儀 (XRD) 25
3-2-2掃描式電子顯微鏡(SEM) 26
3-2-3 微光致螢光原理(Micro-PL)[42] 27
3-2-4 微拉曼光譜(Micro-Raman)[42] 28
3-2-5傅立葉轉換紅外光譜(FTIR) 29
第四章 實驗設備與流程 30
4-1實驗 30
4-1-1 實驗藥品預備與設備 30
4-1-2實驗氧化鋅晶種層旋塗液與氧化鋅生長溶液配製 34
4-2初步實驗 37
4-2-1 水熱環境下的影響 38
4-2-2 晶種層配方的影響 41
4-3 實驗結果與討論 50
4-3-1以水熱法於矽基板成長氧化鋅分析 50
4-3-2以水熱法於ITO基板成長氧化鋅分析 56
4-3-3以水熱法於鈦基板成長氧化鋅分析 59
第五章 結論與未來展望 62
參考文獻 64
附錄 70

圖目次

圖1-1 晶種層SEM圖(a)電沉積法 (b)溶膠凝膠法 [10] 4
圖1-2氧化鋅薄膜之截面SEM圖(a)電沉積法 (b)溶膠凝膠法[10] 4
圖1-3電沉積與Sol-gel兩種製成的XRD分析圖[10] 5
圖1-4氧化鋅奈米柱於皺摺結構上成長[18] 7
圖1-5 (a)氧化鋅奈米柱於不同溶膠濃度FE-SEM圖,分別為(ⅰ)0.03M (ⅱ)0.05M (ⅲ)0.08M (ⅳ)0.1M (b)四種不同濃度的晶粒大小分佈圖[19] 8
圖1-6 不同r值氧化鋅薄膜XRD圖譜(r=MEA : ZnAc)[20] 9
圖1-7 旋轉塗佈法中不同轉數對氧化鋅薄膜影響之XRD圖[21] 10
圖 2-1 不同維度之奈米尺寸結構材料的能階狀態密度與能量變化關係示意圖[22] 11
圖2-2奈米金粒的熔點隨粒子粒徑變化之關係圖[22] 14
圖2-3 表面原子數與粒徑大小的變化關係圖[22] 16
圖2-4 氧化鋅結構圖[引自維基百科] 17
圖 3-1 濺鍍法原理示意圖 21
圖3-2 水熱法設備結構圖 24
圖3-3 旋轉塗佈法示意圖 24
圖3-4布拉格繞射圖 25
圖3-5 XRD儀器工作原理 26
圖3-6 SEM 構造[引用奈米科技導論全華圖書出版 第五章奈米材料分析與檢測] 27
圖3-7 拉曼光譜[引自維基百科] 28
圖3-8 FTIR原理 29
圖4-1晶種層製程流程圖 34
圖4-2 氧化鋅奈米柱水熱法製程流程圖 35
圖4-3 試片擺放位置示意圖 35
圖4-4 (a)-(d) 氫氧化鈉與前趨物體積比為1:1 SEM圖 38
圖4-5 (a)-(d) 氫氧化鈉與前趨物體積比為2:1 SEM圖 39
圖4-6 (a)-(c) 40
圖4-7 (a) 旋轉塗佈1次 41
圖4-7 (b) 旋轉塗佈3次 42
圖4-7 (c) 旋轉塗佈7次 42
圖4-7 (d) 旋轉塗佈9次 43
圖4-7 (e)醋酸鋅與乙醇胺等體積等濃度0.5M旋塗5次於300℃下退火 44
圖4-7 (f) 0.5M醋酸鋅與1M乙醇胺旋塗5次於300℃下退火 45
圖4-7 (g)醋酸鋅與乙醇胺等體積等濃度0.5M旋塗5次於525℃下退火 46
圖4-7 (h) 0.5M醋酸鋅與1M乙醇胺旋塗5次於525℃下退火 47
圖4-7 (i) 醋酸鋅與乙醇胺等體積等濃度0.5M旋塗3次於525℃下退火 48
圖4-7 (j) 醋酸鋅與乙醇胺等體積等濃度0.5M旋塗3次於300℃下退火 49
圖4-8 氧化鋅奈米柱於矽基板之XRD繞射圖 51
圖4-9 氧化鋅奈米柱FE-SEM圖(a) 400℃ (b) 600℃ 51
圖4-10 氧化鋅奈米柱於矽基板之光致螢光圖譜 52
圖4-11 Non-annealing 氧化鋅奈米結構FE-SEM圖倍率分別 (a) 50K (b) 100K 53
圖4-12 退火溫度400℃ 氧化鋅奈米結構FE-SEM圖倍率分別 (a) 50K (b) 100K 53
圖4-13 退火溫度500℃ 氧化鋅奈米結構FE-SEM圖倍率分別 (a) 50K (b) 100K 54
圖4-14 退火溫度400℃氧化鋅奈米柱 EDS分析圖 55
圖4-15 退火溫度500℃氧化鋅奈米柱 EDS分析圖 55
圖4-16氧化鋅奈米柱於ITO基板之XRD繞射圖 56
圖4-17氧化鋅奈米柱於ITO基板之光致螢光圖譜 57
圖4-18水熱法成長氧化鋅奈米柱於ITO基板上FE-SEM圖(a) 300℃ (b) 400℃ (c) 500℃ (d)600℃ 58
圖 4-19 退火溫度於400℃下的氧化鋅奈米柱FE-SEM圖 (a) 50K (b) 100K 58
圖4-20氧化鋅奈米柱於鈦基板之XRD繞射圖 59
圖4-21鈦基板上的氧化鋅奈米柱與XRD圖譜[44] 60
圖4-22氧化鋅奈米柱於鈦基板之光致螢光圖譜 61
圖4-23 不同退火溫度FE-SEM圖 (a) 500℃ (b) 600℃ 61

表目次
表1-1溶膠濃度變化與多孔隙數量關係圖[19] 8
表2-1 氧化鋅物理性質表[34] 18

[1] Haga, K., Kamidaira, M., Kashiwaba, Y., Sekiguchi, T. and Watanabe, H. , “ZnO thin films prepared by remote plasma-enhanced CVD method,” Journal of Crystal Growth,214-215,77-80(2000).
[2] Wei, G., Zhengwei, L. , “ ZnO thin films produced by magnetron sputtering,” Ceramics International,30,1155-1159(2004).
[3] Sufeng, W., Jianshe, L., and Hua, W. , “Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method,” Materials Characterization,61,1239-1244(2010).
[4] Doyoung, K., Hyemin, K., Min, J.K. and Hyungjun, K. , “The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD,” Applied Surface Science,257,3776-3779(2011).
[5] Chander, R. and Raychaudhuri,A.K. , “Electrodeposition of aligned arrays of ZnO nanorods in aqueous solution,” Solid State Communications,145,81-85(2008).
[6] Bin, L. , “ Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” Journal of the American Chemical Society,125,4430-4431(2003).
[7] M. Izaki, Preparation of Transparent and Conductive Zinc Oxide Films by Optimization of the Two-Step Electrolysis Technique, J. Electrochem. Soc. 146 (1999) 4517-4521.
[8] Masanobu, I. and Takashi, O. , “ Transparent zinc oxide films prepared by electrochemical reaction,” Applied Physics Letters,68,2439-2441(1996).
[9] M. Guo, C.Y. Yang, M. Zhang, Y.J. Zhang, T. Ma, X.D. Wang, et al., Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays, Electrochimica Acta. 53 (2008) 4633–4641.
[10] 黃昇章,「溶膠凝膠法與電沉積法製備晶種層對氧化鋅薄膜性質的影響」
[11] Spanhel, L., Keis, K., Lindquist, S. E. and Hagfeldt, A. , “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” The Journal of Physical Chemistry B,105,3350-3352(2001).
[12] Vayssieres, L., Beermann, N., Lindquis, S.E. and Hagfeldt, A. , “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials,13,233-235(2001).
[13] L.Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” The Journal of Physical chemistry B 105,3350‒3352(2001)
[14] Christina, R., Reggiani, F. and Mazza, E. , “ Electrochemical polishing of titanium in perchloric-methanolic solutions,” Materials Chemistry,4,149-158(1979).
[15] Ohta, H., Hirano, M., Nakahara, K., Maruta, H., Tanabe, T., Kamiya, M., Kamiya, T. and Honoso, H. , “ Fabrication and photoresponse of pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO,” Applied Physics Letters,83,5(2003).
[16] Z. R. Tian, J. A. Voigt, J. Liu, B. MckenZie, M. J. Mcdermott andM. A. Rodriguez,“Complex and oriented ZnO nanostructures,” Nature Materials 2, 821‒826(2003)
[17] Sun, Y. and Ndifor-Angwafor, N.G., Riley, D.J. and Ashfold, M.N.R , “Synthesis and photoluminescence of ultra-thin ZnO anowire/nanotube arrays formed by hydrothermal growth,” Chemical Physics Letters,431,352(2006).
[18] S. J. Kwon and J. G. park,“Theoretical analysis of growth of ZnO nanorods on the amorphous surfaces,” The Journal of Chemical Physics 122, 214714(2005).
[19] M. Dutta, S. Mridha, D. Basak, “Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique”, Applied Surface Science 254 (2008) 2743–2747
[20] Parmod Sagar, P.K. Shishodia, R.M. Mehra,“Influence of pH value on the quality of sol–gel derived ZnO films”, Applied Surface Science 253 (2007) 5419–5424
[21] S. ILICAN*, Y. CAGLAR, M. CAGLAR, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method”, Journal of Optoelectronics and advanced materials Vol. 10, No. 10, October 2008, p. 2578 – 2583
[22]羅吉宗、戴明鳳、林鴻明等人, “奈米科技導論”,全華圖書
[23] Pearson’s Handbook of Crystallographic Data, 4795.
[24]彭立琪, “氧化鋅鋁摻雜釔之透明導電膜材料特性與其應用在氮化鎵藍光發光二極體之研究” , 國立成功大學光電科學與工程研究所,碩士論文(2007)
[25] J. T. Yan, C. H. Chen, S. F. Yen, and C. T. Lee, “Ultraviolet ZnO nanorod/p-GaN-heterostructureed light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 22. No.3, 99.146-148, Feb. 2010.
[26] M. Y. Ke, T. C. Lu, S. C. Yang, C. P. Chen, Y. W. Cheng, L. Y. Chen, C. Y. Chen, J. H. He, and J. J. Huang, “UV light emission from GZO/ZnO/GaN heterojunction diodes with carrier confinement layers,” Opt. Express, vol. 17, no. 25, pp. 22912-22917, Dec. 2009.
[27] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting-diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., vol. 91, pp. 231113-1-231113-3, Dec. 2007.
[28] S. J. Jiao, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, Y. C. Liu, and X. W. Fan, “Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode,” Phys. Stat. Sol. (c), vol. 3, no. 4, pp. 972-975, Mar. 2006.
[29] K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in amorphous oxide layer,” Appl. Phys. Lett., vol.84, no. 19, pp. 3810-3812, May. 2004.
[30] M. K. Wu, Y. T. Shih, W. C. Li, H. C. Chen, M. J. Chen, H. Kuan, J. R. Yang, and M Shiojiri, “Ultraviolet electroluminescence from n-ZnO-SiO2-ZnO nanocomposite/p-GaN heterojunction light-emitting diodes at forward and reverse bias,” IEEE Photon. Technol. Lett., vol. 20, no. 21, pp. 1772-1774, Nov. 2008.
[31] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes,” IEEE Tran. On Electron Devices, vol. 57, no. 9, pp.2195-2202, Sep. 2010.
[32] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M . Shiojiri, and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol.20, 165201, pp. 1-8, Mar. 2009.
[33] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M . Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Stat. Sol. RRL, vol. 3, no. 2-3, pp. 88-90, Feb. 2009.
[34] 蔡來福, “以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究”,國立中央大學光電科學研究所,碩士論文(2002)
[35] Jenkins, D.F., Cunningham, M.J., Velu, G. and Remiens, D. ,“ The use of sputtered ZnO piezoelectric thin films as broad-band microactuators,” Sensors and Actuators A: Physical,63,135-139(1997).
[36] Tang, I.T., Wang, Y.C., Hwang, W.C. and Wu, N.C. ,“ Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions,” Journal of Crystal Growth,252,190-198(2003).
[37] J. C. Ronfard-Haret.,“ Electric and luminescent properties of ZnO-based ceramics containing small amounts of Er and Mn oxide,” Journal of Luminescence, 2003, pp. 1-12.
[38] Q. Zhao, H. Z. Zhang, Y. W.Zhu, S. Q. Feng and D. P. Yu,“Morphological effects on the field emission of ZnO nanorod arrays,” Applied Physics Letters 86, 203115(2005).
[39] Lu X, Zhang H, Ni Y, Zhang Q, Chen J, “Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors.”Biosensors and Bioelectronics 24, pp.93-98(2008).
[40] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Thomson Laering, Inc, Singapore.
[41] W. Geffcken, E. Berger and Dtsch,“Verfahren zur AEnderung des Reflexionsver moegens optischer Glaeser,” Reichspatent 736411(1939).
[42] http://faculty.ndhu.edu.tw/~phys2/GC38500/image/L3.pdf 固體材料的光致發光
[43] S. Mridha and D. Basak, “Effect of concentration of hexamethylene tetramine on the structural morphology and optical properties of ZnO microrods grown by low-temperature solution approach”, P hys. Status Solidi A 206, No. 7, 1515–1519 (2009).
[44] Yuxin Wang,† Xinyong Li,*,†,‡ Guang Lu,† Xie Quan,† and Guohua Chen‡,“Highly Oriented 1-D ZnO Nanorod Arrays on Zinc Foil: Direct Growth from Substrate,Optical Properties and Photocatalytic Activities”, J. Phys. Chem. C 2008, 112, 7332-7336.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊