(3.237.20.246) 您好!臺灣時間:2021/04/15 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥茹
研究生(外文):Yan-Ju Chen
論文名稱:使用慣性感測單元之室內及戶外行人航位推算法
論文名稱(外文):Indoor/Outdoor Pedestrian Dead Reckoning Method Using IMU
指導教授:石勝文石勝文引用關係
指導教授(外文):Sheng-Wen Shih
口試委員:張瑞益周信宏
口試委員(外文):Jui-Yi ChangHsin-Hung Chou
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:39
中文關鍵詞:全球定位系統慣性感測單元零速度更新行人航位推算
外文關鍵詞:GPSInertial Measurement UnitZero Velocity UpdatePedestrian Dead Reckoning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們使用微機電系統 (Micro Electro Mechanical System) 技術製作出的慣性感測單元 (Inertial Measurement Unit) 來追蹤行人活動軌跡。微機電慣性感測單元是由三軸加速度計、三軸速度陀螺儀以及三軸磁力計組合而成,具有體積小、重量輕、成本低等特性。在本研究中,微機電慣性感測單元是安裝在受測者的鞋面上,以追蹤行人活動軌跡。論文中所提出來的方法是利用IMU結合粒子濾波器 (Particle Filter) 和自製地圖及Google戶外空照圖的方式,做出適用於室內及戶外的行人追蹤定位系統。在室內地圖中,我們利用不同顏色的像素值,區分出建築物中的障礙、通路、樓梯、以及出入口等不同部分,並用以防止粒子出現穿牆而過、跨越欄杆等不合理的行動路徑。於戶外地圖中,我們也標示出道路及建築物外牆及入口,以利正確追蹤。此外,也結合了 GPS (Global Positioning System) 的量測值,有效的降低粒子追蹤路線的偏移。於室內及戶外之間的轉換,透過影像中像素值的顏色變化達到地圖自動切換的效果,讓行人無論行走於室內或戶外都能夠被追蹤定位。由實驗結果顯示,被追蹤者的行動路徑在室內及戶外地圖上,都正確的行走在合理的範圍,達到行人追蹤定位的結果。

In this thesis, we use an inertial measurement unit (IMU) fabricated with the micro electro mechanical (MEMS) technique to study the pedestrian dead reckoning (PDR) problem. The IMU is composed of a 3-axis accelerometer, a 3-axis rate-gyro, and a 3-axis magnetometer, and is lightweight, miniature, and low cost due to the MEMS technique. In this work, the IMU is attached on the surface of the shoe tongue for trajectory tracking. The proposed method uses the particle filter, 2-D indoor/outdoor maps, and Google satellite images for indoor/outdoor PDR. In each indoor floor map, we use different colors to mark the walls, pillars, passageway, stairs, entrances and exits in order to eliminate unreasonable trajectories such as walking through a wall or a railing. Likewise, in the outdoor maps, roads, pathways, walls and the entrances of buildings are all marked clearly to facilitate accurate PDR computation. Also, we incorporate the global positioning system measurement to alleviate the trajectory drifting effectively. The color marks in the indoor/outdoor maps can also help us to determine the correct timing for changing a map to keep tracking a pedestrian walking in a mixed indoor/outdoor path. Experimental results show that the proposed method can provide accurate trajectory estimates in mixed indoor/outdoor paths.

目次
致謝.......................................................................................................i
論文摘要....................................................................................................ii
Abstract ..................................................................................................iii
目次........................................................................................................iv
圖目次.......................................................................................................vi
1.1 傳統大型陀螺儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Suh 和Park 利用壓力感測器偵測步伐踏地的每個階段。(圖片來源: [1]) 4
1.3 Young 和Sangkyung 將一個完整的步態分類成四種狀態。(圖片來源: [1]) 5
1.4 Jimenez et al. 設定了三個條件,若三個條件皆滿足,則可以找到腳掌
著地的瞬間點。(圖片來源: [2]) . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 WCS 與SCS 的座標關係. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 影像座標系(Image Coordinate System, ICS) . . . . . . . . . . . . . . . . 8
2.3 步伐站立及擺動階段示意圖. . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 PDR 系統流程圖(圖片來源: [3]) . . . . . . . . . . . . . . . . . . . . . . 10
2.5 科技三館二樓平面圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 戶外地圖對應之單色圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 室內的地圖切換單色圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 戶外的地圖切換單色圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 設備示意圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 將壓力感測器固定於鞋墊前後並放入鞋子裡. . . . . . . . . . . . . . . 25
3.3 以每分鐘87 步的慢速行走之實驗結果. . . . . . . . . . . . . . . . . . 26
3.4 以每分鐘120 步的中速行走之實驗結果. . . . . . . . . . . . . . . . . . 27
3.5 以每分鐘150 步的快速行走之實驗結果. . . . . . . . . . . . . . . . . . 27
3.6 觀察圖3.5 的步伐數比較. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 沒有限制粒子分佈路徑的實驗結果. . . . . . . . . . . . . . . . . . . . 29
3.8 有限制粒子分佈路徑的實驗結果. . . . . . . . . . . . . . . . . . . . . . 30
3.9 行人欲從三樓平面圖左下方樓梯走到二樓. . . . . . . . . . . . . . . . 31
3.10 粒子平均值由棕色區塊進入到綠色區塊地圖自動切換到二樓平面圖. . 32
3.11 於戶外粒子路徑結合GPS 路徑的結果. . . . . . . . . . . . . . . . . . . 33
3.12 行人欲從地圖左上方的門走出戶外. . . . . . . . . . . . . . . . . . . . 34
3.13 走出戶外地圖自動從二樓地圖切換到戶外地圖. . . . . . . . . . . . . . 35
表目次......................................................................................................viii
2.1 轉換關係中不同顏色像素值的差異. . . . . . . . . . . . . . . . . . . . 20
第一章緒論...................................................................................................1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 研究目標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
第二章研究方法...............................................................................................7
2.1 座標系統的定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 行人航位推算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 擺動階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 站立階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 自製平面地圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 路徑合理性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 地圖切換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 GPS 接收器的位置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
第三章實驗結果................................................................................................23
3.1 粒子濾波器的初始化設定. . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 壓力感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 結合地圖之實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 路徑合理性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 地圖自動切換. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 粒子及GPS 路徑. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 室內走出戶外的轉換. . . . . . . . . . . . . . . . . . . . . . . . 34
第四章結論....................................................................................................36
參考文獻......................................................................................................37
[1] Y. S. Suh and S. Park, “Pedestrian inertial navigation with gait phase detection assisted zero velocity updating,” in Proceedings of the 4th International Conference on Autonomous Robots and Agents, (Wellington, New Zealand), pp. 336–341, 2 2009.
[2] A. Jimenez, F. Seco, J. Prieto, and J. G. C. Superior, “Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU,” in Proceedings of 7th Workshop on Positioning Navigation and Communication, pp. 135–143, 3 2010.
[3] Y.-L. Hsu, “Bias compensation methods for pedestrian dead reckoning with a low-cost IMU,” Master’s thesis, National Chi Nan University, 2012.
[4] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer Graphics and Applications, vol. 25, pp. 38–46, 11 2005.
[5] D. Torrieri, M. B. Bendak, and G. Ritchie, “Indoor geolocation by inertial navigation,” in Proceedings of Military Communications Conference, pp. 1760–1765, 2011.
[6] http://www.nondot.org/sabre/Mirrored/GraphicsProgrammingBlackBook/gpbb35.pdf.
[7] http://www.dfo-mpo.gc.ca/Library/284522e.pdf.
[8] http://www.gpsinformation.org/dale/nmea.htm#GGA.
[9] http://www.nrem.iastate.edu/class/assets/nrem446_546/week3/Dilution_of_Precision.pdf.
[10] R. Jirawimut, P. Ptasinski, V. Garaj, F. Cecelja, W. Balachandran, and S. Member, “A method for dead reckoning parameter correction in pedestrian navigation system,” IEEE Transactions on Instrumentation and Measurement, vol. 52, pp. 209–215, 2003.
[11] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174–187, 8 2002.
[12] R. Feliz, E. Zalama, and J. G. Garcia-Bermejo, “Pedestrian tracking using inertial sensors,” journal of physical agents, vol. 3, pp. 35–43, 1 2009.
[13] S. K. Park and Y. S. Suh, “A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems,” Sensors, vol. 10, no. 10, pp. 9163–9178, 2010.
[14] Q. Li, M. Young, V. Naing, and J. Donelan, “Walking speed estimation using a shankmounted inertial measurement unit,” Journal of Biomechanics, vol. 43, p. 1640–1643, 2010.
[15] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering for location estimation,” IEEE Pervasive Computing, vol. 2, pp. 24–33, 9 2003.
[16] S. Yang and Q. Li, “Ambulatory walking speed estimation under different step lengths and frequencies,” in Proceedings of IEEE/ASME International Conference on Advanced Intelligent, pp. 658–663, 2010.
[17] F. Cavallo, A. M. Sabatini, and V. Genovese, “A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1187–1191, 8 2005.
[18] Y. Li, X. Luo, X. T. Ren, and J. J. Wang, “A robust humanoid robot navigation algorithm with ZUPT,” in Proceedings of International Conference on Mechatronics and Automation, pp. 505–510, 8 2012.
[19] L.-P. Sylvie, B. Mehdi, and C. neda Nadir, “An improved pedestrian inertial navigation system for indoor environments,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2505–2510, 9 2011.
[20] B. Pricope and H. Haas, “Speed estimation for pedestrian dead-reckoning,” in Proceedings of IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, pp. 314–318, 9 2010. 39
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔