跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴家琪
研究生(外文):Chia-Chi Tai
論文名稱:矩陣嵌入式之資料隱藏其快速循序嵌入技巧
論文名稱(外文):A Sequential Embedding Approach for Matrix-Embedding Based Data Hiding
指導教授:黃育銘
指導教授(外文):Yuh-Ming Huang
口試委員:林家禎謝孫源
口試委員(外文):Chia-Chen LinSun-Yuan Hsieh
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:43
中文關鍵詞:矩陣編碼資料隱藏卷積碼循序
外文關鍵詞:Matrix embeddingData hidingConvolutional codesequential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
資料隱藏(data hiding),是將所要隱藏的秘密訊息嵌入至載體,在一般狀況下,肉眼無法察覺偽裝(stego)訊息的異常,因而達到安全通訊的目的。資料隱藏的應用與技術層面極廣,其中常用線性碼(linear code)矩陣嵌入(matrix embedding)做資料隱藏,但其嵌入效率與理論值仍有一段距離,若利用線性碼中的卷積碼(convolutional code)藏匿訊息,可增加秘密訊息的嵌入量,使得嵌入率(Embedding Rate)提高,但編碼過程的計算複雜度也會增加許多,因此本篇論文利用快速循序(sequential)嵌入技巧,與維特比演算法(Viterbi algorithm)和堆疊演算法(Stack algorithm)相比,並加入次佳解改進,提昇藏匿訊息的編碼過程速率,在輸入長度極大時,仍可穩定降低卷積碼藏匿編碼端複雜度過高的問題,達到快速嵌入的效果。
Data hiding means that hiding the secret message into the carrier. Usually, the naked eye of the people cannot perceive any abnormality in the stego image, and thus to achieve secure communication. The technical level of data hiding is very versatile. Convolutional codes with long codeword length can be used to do data embedding very efficiently, but it takes a rather high computational complexity in the encoding process. This thesis presents a Maximum-likelihood sequential embedding algorithm and its approximated solutions for the convolutional code-based data embedding. Compared to the Viterbi algorithm and the Stack algorithm, the embedding speed can be enhanced a lot.
致謝 i
論文摘要 ii
Abstract iii
目次 iv
圖片目次 vi
表格目次 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 3
1.3 論文架構 4
第二章 文獻探討 5
2.1 線性碼之矩陣編碼 5
2.1.1. 線性方塊碼之概念 5
2.1.2. 線性方塊碼之標準陣列 6
2.2 系統化卷積碼之矩陣編碼 8
2.2.1. 系統化卷積碼之概念 8
2.2.2. 系統化卷積碼之標準陣列 8
2.2.3. 系統化卷積碼之結構特性 13
第三章 矩陣嵌入式之資料隱藏 17
3.1 矩陣嵌入式之資料隱藏 17
3.2 快速循序嵌入技巧最佳解 21
3.3.1 Viterbi algorithm與嵌入訊息應用 21
3.3.2 快速循序嵌入技巧與嵌入訊息應用 22
3.3.3 Stack algorithm與嵌入訊息應用 24
3.3 快速循序嵌入技巧次佳解 26
3.3.1. 快速循序嵌入技巧次佳解改良 26
3.3.2. Stack algorithm次佳解改良 28
第四章 實驗結果與分析 29
第五章 結論與未來展望 40
5.1 結論 40
5.2 未來展望 41
參考文獻 42
[1]I. J. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, “Digital watermarking and steganography,” 2nd Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.
[2]G.L Simmons, “The prisoners problem and subliminal channels,” Proc. Annu. Int. Cryptology Conf., SantaBarbara, CA, pp.51-67, 1984.
[3]Q. Zhang, Y. Liu, S.J. Zhang, “Classification method of Jsteg stego-images and F5 stego-image,” in Proc. the 4th International Conference on Innovative Computing, Information and Control, pp. 394–397, Dec. 2009.
[4]J. Fridrich, M. Goljan, R. Du, “Detecting LSB steganography in color, and gray-scale images,” IEEE Multimedia, vol. 8, pp.22-28, Oct. 2001.
[5]T. Pevny, P. Bas, J. Fridrich, “Steganalysis by subtractive pixel adjacency matrix,” IEEE Transactions on, Information Forensics and Security, vol. 5, pp.215-224, Jun. 2010.
[6]J.J. Harmsen, W.A. Pearman, “Capacity of steganographic channels,” IEEE Transactions on, Information Theory, vol. 55, pp.1775-1792, Apr. 2009.
[7]W. Zhang, X. Zhang, S. Wang, “A double layered “plus-minus one” data embedding scheme,” IEEE Signal Processing Letters, vol. 14, pp.848-851, Nov. 2007.
[8]J. Fridrich, P. Lisone ̌k, and D. Soukal, “On steganographic embedding efficiency,” in Proc. 8th Int. Workshop on Information Hiding, ser. Springer LNCS, vol. 4437, pp.282-296, 2006.
[9]J. Fridrich, M. Goljan, P. Lisone ̌k, and D. Soukal, “Writing on wet paper,” IEEE Transactions on, Signal Processing, vol. 53, no. 10, pp.3923-3935, October 2005.
[10]J. Bierbrauer and J. Fridrich, “Constructing good covering codes for applications in steganography,” in Trans. on Data Hiding and Multimedia Security III, ser. Springer LNCS, vol.4920, pp. 1-22, 2008.
[11].R. Crandall. Some notes on steganography. Steganography Mailing List, available from http://os.inf.tu-dresden.de/westfeld/crandall.pdf, 1998.
[12]Jyun-Jie Wang, Houshou Chen, Chi-Yuan Lin, Ting-Ya Yang. “An Embedding Strategy for Large Payload Using Convolutional Embedding Codes,” IEEE ITS Telecommunications (ITST), pp.365-369, Nov. 2012.
[13]J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE Information Forensics and Security, vol. 1, no. 3, pp.390-395, Sep. 2006.
[14]Jiayong Chen, Yuefei Zhu, Yong Shen and Weiming Zhang, “Efficient Matrix Embedding Based on Random Linear Codes,” in Proc. MINES2010, pp. 879-883, Dec. 2010.
[15]Yunkai Gao, Xiaolong Li and Bin Yang, “Employing optimal matrix for efficient matrix embedding,” IEEE Intelligent Information Hiding and Multimedia Signal, pp.161-165, Sep. 2009.
[16]Qian Mao, “A fast algorithm for matrix embedding steganography,” ELSEVIER Digital Signal Processing, vol. 25, pp.248-254, Feb. 2014.
[17]Yunghsiang S. Han, Po-Ning Chen, Hong-Bin Wu, “A maximum-likelihood soft-decision sequential decoding algorithm for binary convolutional codes,” IEEE Communications, vol.50, pp.173-178, Feb. 2002.
[18]Jyun-Jie Wang, Chi-Yuan Lin, Houshou Chen, Ting-Ya Yang, “A suboptimal embedding algorithm for binary matrix embedding,” IEEE Computer, Consumer and Control (IS3C), pp.165-168, June 2012.
[19]Jyun-Jie Wang, Houshou Chen, “A suboptimal embedding algorithm with low complexity for binary data hiding,” IEEE Acoustics, Speech and Signal Processing (ICASSP), pp.1789-1792, March 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top