|
References [1] “ICT statistics,” International Telecommunication Union, 2014. [2] W.-Y. Lu and Y. Taur, “On the scaling limit of ultrathin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1137-1141, May 2006. [3] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, A.-S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. of the IEEE, vol. 89, no. 3, pp. 259-288, Mar. 2001. [4] B. J. Lin, “Lithography till the end of Moore’s law,” in Proceedings of the 2012 ACM International Symposium on Physical Design, 2012, pp. 1-2. [5] B. L. Anderson and R. L. Anderson, “Fundamentals of Semiconductor Devices,” McGraw-Hill, 2005, p. 445. [6] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. [7] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 437-439, Apr. 2011. [8] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤50-mV/decade subthreshold swing,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1504-1506, Nov. 2011. [9] T. Krishnamohan, K. Donghyun, S. Raghunathan, and K. Saraswat, “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60mV/dec subthreshold slope,” in IEDM Tech. Dig., 2008, pp. 1-3. [10] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Germanium-source tunnel field effect transistors with record high ION/IOFF,” in VLSI Symp. Tech. Dig., 2009, pp. 178–179. [11] C. L. Royer, A. Villalon, D. Cooper, F. Andrieu, J.-M. Hartmann, P. Perreau, and B. Prévitali, “High performance FDSOI MOSFETs and TFETs using SiGe channels and raised source and drain,” in Proceedings of the International Silicon-Germanium Technology and Device Meeting (ISTDM), 2012, pp. 1-2. [12] Y. Liu, H.-J. Wang, J. Yan, and G.-Q. Han, “A silicon tunnel field-effect transistor with an in situ doped single crystalline Ge source for achieving sub-60 mV/decade subthreshold swing,” Chin. Phys. Lett., vol. 30, no. 8, pp. 088502-088502-3, Jun. 2013. [13] D. Mohata, S. Mookerjea, A. Agrawal, Y. Li, T. Mayer, V. Narayanan, A. Liu, D. Loubychev, J. Fastenau, and S. Datta, “Experimental staggered-source and N+ pocket-doped Channel III–V tunnel field-effect transistors and their scalabilities,” Appl. Phys. Exp., vol. 4,pp. 024105-024105-3, Feb. 2011. [14] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing,” in IEDM Tech. Dig., 2011, pp. 785-788. [15] J. Appenzeller, Y.-M. Lin , J. Knoch , and Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Phys. Rev. Lett., vol. 93, no. 19, pp. 196905-196805-4, Nov. 2004. [16] K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-κ gate dielectric,” IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1725-1733, Jul. 2007. [17] C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, “Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric,” Appl. Phys. Lett., Vol. 96, no. 12, pp. 122104-122104-3, Mar. 2010. [18] E.-H. Toh, G. H. Wang, G. Samudra, and Y.-C. Yeo, “Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications,” J. Appl. Phys., vol. 103, no. 10, p. 104504, May 2008. [19] Q. Zhang, W. Zhao, and S. A. Seabaugh, “Low-subthreshold swing tunnel transistors,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 297-300, Apr. 2006. [20] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, “Tunnel field-effect transistor without gate-drain overlap,” Appl. Phys. Lett., vol. 91, no. 5, p. 053102, Jul. 2007. [21] A. Chattopadhyay and A. Mallik, “Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 677-683, Mar. 2011. [22] N. Cui, R. Liang, J. Xu, “Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation,” Appl. Phys. Lett., vol. 98, no. 14, pp. 142105-142105-3, Apr. 2011. [23] H. G. Virani, S. Gundapaneni, and A. Kottantharayil, “Double dielectric spacer for the enhancement of silicon p-channel tunnel field effect transistor performance,” Jpn. J. Appl. Phys., vol. 50, pp. 04DC04-04DC04-6, Apr. 2011. [24] G. Lee, J.-S. Jang, and W. Y. Choi, “Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors,” Semicond. Sci. Technol., vol. 28, pp. 052001-052001-5, 2013. [25] K. L. Low, C. Zhan, G. Han, Y. Yang, K.-H. Goh, P. Guo, E.-H. Toh, and Y.-C. Yeo, “Device physics and design of a L-shaped germanium source tunneling transistor,” Jpn. J. Appl. Phys., vol. 51, pp. 02BC04-02BC04-6, Feb. 2012. [26] W. Wang, P.-F. Wang, C.-M. Zhang, X. Lin, X.-Y. Liu, Q.-Q. Sun, P. Zhou, and D. W. Zhang, “Design of U-shape channel tunnel FETs with SiGe source regions,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 193-197, Jan. 2014. [27] B. Ghosh and M. W. Akram, “Junctionless tunnel field effect transistor,” IEEE Electron Device Lett., vol . 34, no. 5, pp. 584-586, May 2013. [28] K. K. Bhuwalka, J. Schulze, and I. Eisele, “A simulation approach to optimize the electrical parameters of a vertical tunnel FET,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1541-1547, Jul. 2005. [29] Boucart and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid-State Electron., vol. 51, no. 11-12, pp. 1500-1507, Nov.-Dec. 2007. [30] K. K. Bhuwalka, J. Schulze, and I. Eisele, “Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer,” Jpn. J. Appl. Phys., vol. 43, no. 7A, pp. 4073-4078, Jul. 2004. [31] P.-F. Wang, K. Hilsenbeck, Th. Nirschl, M. Oswald, Ch. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, “Complementary tunneling transistor for low power application,” Solid-State Electron., vol. 48, pp. 2281-2286, May 2004. [32] L. Liu, D. Mohata, and S. Datta, “Scaling length theory of double-gate interband tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 902-908, Apr. 2012. [33] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical model for a tunnel field-effect transistor,” in Proceedings of IEEE Mediterranean Electrotechnical Conference (MELECON), 2008, pp. 923-928. [34] A. S. Verhulst, D. Leonelli, R. Rooyackers, and G. Groeseneken, “Drain voltage dependent analytical model of tunnel field-effect transistors,” J. Appl. Phys., vol. 110, no. 2, p. 024510, Jul. 2011. [35] N. Cui, L. Liu, Q. Xie, Z. Tan, R. Liang, J. Wang, and J. Xu, “A two-dimensional analytical model for tunnel field effect transistor and its applications,” Jpn. J. Appl. Phys., vol. 52, no. 4, p. 044303, Apr. 2013. [36] C. Zener, “A theory of the electrical breakdown of solid dielectrics,” in Proc. R. Soc. Lond. A, vol. 145, no. 855, pp. 523-529, Jul. 1934. [37] L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev., vol. 109, no. 2, pp. 603-604, Jan. 1958. [38] L. Keldysh, “Behavior of non-metallic crystals in strong electric fields,” Sov. Phys. JETP, vol. 6, no. 4, pp. 763- 770, Apr. 1958. [39] E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181-188, Jan. 1960. [40] G. A. M. Hurkx, “On the modelling of tunnelling currents in reverse-biased p-n junctions,” Solid-State Electron., vol. 32, no. 8, pp. 665-668, Aug. 1989. [41] G. A. M. Hurkx, “A New recombination model for device simulation including tunneling,” IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 331-338, Sep. 2009. [42] A. Schenk, “Rigorous theory and simplified model of the band-to-band tunneling in silicon,” Solid-State Electron., vol. 36, no. 1, pp. 19-34, May 1993. [43] S. Tanaka, “A unified theory of direct and indirect interband tunneling under a nonuniform electric field,” Solid-State Electron., vol. 37, no. 8, pp. 1543-1552, Oct. 1994. [44] M. Luisier and G. Klimeck, “Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling,” J. Appl. Phys., vol. 107, no. 8, pp. 084507-084507-6, Apr. 2010. [45] W. Vandenberghe, B. Sorée, W. Magnus, and M. V. Fischetti, “Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields: A rigorous approach,” J. Appl. Phys., vol. 109, no. 8, pp. 124503-124503-12, Jun. 2011. [46] M. Oehme, M. Sarlija, D. Hahnel, M. Kaschel, J. Werner, E. Kasper, and J Schulze, “Very high room-temperature peak-to-valley current ratio in Si Esaki tunneling diodes (March 2010),” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2857-2863, Nov. 2010. [47] T. Baba, “Proposal for surface tunnel transistors,” Jpn. J. Appl. Phys., vol. 31, no. 4B, pp. L455-L457, Apr. 1992. [48] D. J. Griffiths, “Introduction to Quantum Mechanics,” Prentice Hall, New Jersey, 1994, pp. 274-297. [49] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition, Wiley, New York, 1981. [50] J. L. Moll, “Physics of Semiconductors,” McGraw-Hill, New York, 1970, p. 252. [51] E. O. Kane, “Theory of tunneling,” J. Appl. Phys., vol. 31, no. 1, pp. 83-91, 1961. [52] K. Leo, “High-field transport in semiconductor superlattices,” Springer, 2003, pp. 1-8. [53] B. K. Ridley, “Quantum Processes in Semiconductors,” Oxford University Press, 1999, pp. 44-81. [54] W. M. Reddick and G. A. J. Amaratunga, “Silicon surface tunneling transistor,” Appl. Phys. Lett., vol. 67, no. 4, pp. 494-496, May 1995. [55] O. M. Nayfeh, J. L. Hoyt, D. A. Antoniadis, “Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2264-2269, Sep. 2009. [56] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Direct and indirect band-to-band tunneling in germanium-based TFETs,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. [57] J. Z. Peng, S. Haddad, J. Hsu, J. Chen, S. Longcor, and C. Chang, “Accurate simulation on band-to-band tunneling induced leakage current using a global non-local model,” in Proceedings of International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 1995, p. 141. [58] W.-Y. Loh, K. Jeon, C. Y. Kang, J. Oh, T.-J. K. Liu, H. H. Tseng, W. Xiong, P. Majhi, R. Jammy, and C. Hu, “Highly scaled (Lg 56 nm) gate-last Si tunnel field-effect transistors with ION 100 μA/μm,” Solid-State Electron., vol. 65-66, pp. 22-27, Nov.-Dec. 2011. [59] Synopsys MEDICI User’s Manual, Synopsys Inc., Mountain View, CA, 2010. [60] D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. D. Gendt, M. M. Heyns, and G. Groeseneken, “Silicide engineering to boost Si tunnel transistor drive current,” Jpn. J. Appl. Phys., vol. 50, no. 4, pp. 04DC05-04DC05-4, Apr. 2011. [61] A. Vandooren, D. Leonelli, R. Rooyackers, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, and C. Huyghebaert “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs,” Solid-State Electron., vol. 83, pp. 50-55, 2013. [62] G. B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, “Can interface traps suppress TFET ambipolarity?” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1557-1559, Dec. 2013. [63] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. Hu, and A. Javey, “Ultrathin body InAs tunneling field-effect transistors on Si substrates”, Appl. Phys. Lett., vol. 98, no. 11, p. 113105, Mar. 2011. [64] T. Krishnamohan, D. Kim, C. D. Nguyen, C. Jungemann, Y. Nishi, and K. C. Saraswat, “High-mobility low band-to-band-tunneling strained-germanium double-gate heterostructure FETs: Simulations,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1000-1009, May 2006. [65] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, Aug. 1996. [66] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe,” New York: Wiley, 2001. [67] C. Rivas, R. Lake, G. Klimeck, W. R. Frensley, M. V. Fischetti, P. E. Thompson, S. L. Rommel, and P. R. Berger, “Full-band simulation of indirect phonon-assisted tunneling in a silicon tunnel diode with delta-doped contacts,” Appl. Phys. Lett., vol. 78, no. 6, pp. 814-816, Feb. 2001. [68] M. V. Fischetti, T. P. O’ Regan, S. Narayanan, C. Sachs, S. Jin, J. Kim, and Y. Zhang, “Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2116-2136, Sep. 2007. [69] R. A. Logan, J. M. Rowell, and F. A. Trumbore, “Phonon spectra of Ge-Si alloys,” Phys. Rev., vol. 136, no. 6A, pp. 1751-1755, Dec. 1964. [70] A. G. Chynoweth, R. A. Logan, and D. E. Thomas, “Phonon-assisted tunneling in silicon and germanium Esaki junctions,” Phys. Rev., vol. 125, no. 3, pp. 877-881, Feb. 1962. [71] J.-L. Ma, H.-M. Zhang, X.-Y. Wang, Q. Wei, G.-Y. Wang, and X.-B. Xu, “Valence band structure and hole effecitve mass of uniaxial stressed germanium,” J. Comput. Electron., vol. 10, no. 4, pp. 388-393, Oct. 2011. [72] X. Wang, D. L. Kencke, K. C. Liu, L. F. Register, and S. K. Banerjee, “Band alignments in sidewall strained Si/strained SiGe heterostructures,” Solid-State Electron., vol. 46, no. 12, pp. 2021-2025, Dec. 2002. [73] A. Rahman, M. S. Lundstrom, and A. W. Ghosh, “Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers,” J. Appl. Phys., vol. 97, no. 5, pp. 053702-053702-12, 2005. [74] S. J. Koester, I. Lauer, A. Majumdar, J. Cai, J. Sleight, S. Bedell, P. Solomon, S. Laux, L. Chang, S. Koswatta, W. Haensch, P. Tomasini, and S. Thomas, “Are Si-SiGe tunneling field-effect transistors a good idea?” ECS Trans., vol. 33, no. 6, pp. 357-361, 2010. [75] D. K. Mohata, R. Bijesh, V.Saripalli, T. Mayer, and S. Datta, “Self-aligned gate nanopillar In0.53Ga0.47As vertical tunnel transistor,” in Proceedings of Device Research Conference (DRC), 2011, pp. 203-204. [76] D. Pawlik, B. Romanczyk, P. Thomas, S. Rommel, M. Edirisooriya, R. Contreras-Guerrero, R. Droopad, W.-Y. Loh, M. H. Wong, K. Majumdar, W.-E Wang, P. D. Kirsch, and R. Jammy, “Benchmarking and improving III-V Esaki diode performance with a record 2.2 MA/cm2 peak current density to enhance TFET drive current,” in IEDM Tech. Dig., 2012, pp. 812-814. [77] J.-Y. Li and J. C. Sturm, “The effect of germanium fraction on high-field band-to-band tunneling SiGe junctions in forward and reverse biases,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2479-2484, Aug. 2013. [78] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett., vol. 78, no. 21, pp. 3337–3339, May 2001. [79] S. Mookerjea and S. Datta, “Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25V supply voltage logic applications”, in Tech. Dig. of the 66th Device Research Conference, 2008, pp. 47-48. [80] S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, and S. Datta, “Temperature dependent I–V characteristics of a vertical In0.53Ga0.47As tunnel FET,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 564-566, Jun. 2010. [81] H. G. Virani, R. B. Rao, and A. Kottantharayil, “Investigation of novel Si/SiGe heterostructures and gate induced source tunneling for improvement of p-channel tunnel field-effect transistors”, Jpn. J. Appl. Phys., vol. 49, No. 4, pp. 04DC12-04DC12-5, Apr. 2010. [82] E.-H. Toh, G. H. Wang, L. Chan, D. Sylvester, C.-H. Heng, G. S. Samudra, and Y.-C. Yeo, “Device design and scalability of a double-gate tunneling field-effect transistor with silicon–germanium source,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2593-2597, Apr. 2008. [83] E.-H. Toh, G. H. Wang, L. Chan, G. Samudra, and Y.-C. Yeo, “Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization,” Appl. Phys. Lett., vol. 90, no. 26, pp. 263507-263507-3, Jun. 2007. [84] E.-H. Toh, G.-H. Wang, and Y.-C. Yeo, “Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction,” Appl. Phys. Lett., vol. 91, no. 24, pp. 243505-243505-3, Dec. 2007. [85] International Technology Roadmap for Semiconductor, 2013 edition. [86] Y. Khatami and K. Banerjee, “Scaling analysis of graphene nanoribbon tunnel-FETs,” in Device Research Conference (DRC), 2009, pp. 197-198. [87] M. G. Bardon, H. P. Neves, R. Puers, and C. V. Hoof, “Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions,” IEEE Trans. Electron Devices, vol. 57, pp. 827-834, Apr. 2010. [88] Y. Taur, C. H. Wann, and D. J. Frank, “25 nm CMOS design considerations,” in IEDM Tech. Dig., 1998, pp. 789-792. [89] Y. Khatami and K. Banerjee, “Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752-2761, Nov. 2009. [90] P.-F. Wang, T. Nirschl, D. Schmitt-Landsiedel, W. Hansch, “Simulation of the Esaki-tunneling FET,” Solid-State Electron., vol. 47, no.7, pp. 1187-1192, Jul. 2003. [91] C. Hu, “Green transistor as a solution to the IC power crisis,” in 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), 2008, pp. 16-20. [92] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, Nov. 2011. [93] A. C. Seabaugh and Q. Zhang, “Low voltage tunnel transistors for beyond CMOS logic,” Proceedings of the IEEE, vol. 98, pp. 2095-2110, Dec. 2010. [94] M. Luisier and G. Klimeck, “Performance comparisons of tunneling field-effect transistors made of InSb, carbon, and GaSb-InAs broken gap heterostructures,” in IEDM Tech. Dig., 2009, pp. 913-916. [95] M. S. Tyagi, “Determination of effective mass and the pair production energy for electrons in germanium from Zener diode characteristics,” Jpn. J. Appl. Phys., vol. 12, no. 1, pp. 106-108, Jan. 1973. [96] A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys., vol. 107, no. 2, 024518, Jan. 2010. [97] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical model for point and line tunneling in a tunnel field-effect transistor,” in Proceedings of International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2008, pp. 137-140. [98] D. Verreck, A. S. Verhulst, K.-H. Kao, W. G. Vandenberghe, K. D. Meyer, and G. Groeseneken, “Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2128-2134, Jul. 2013. [99] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, W. Magnus, D. Leonelli, G. Groeseneken, and K. D. Meyer, “Optimization of gate-on-source-only tunnel FETs with counter-doped pockets,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2070-2077, Aug. 2012. [100] C.-H. Shih and J.-S. Wang, “Threshold voltage of ultrathin gate-insulator MOSFETs,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 278-281, Mar. 2009. [101] W. Lee and W. Y. Choi, “Influence of inversion layer on tunneling field-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1191-1193, Sep. 2011.
|