跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/14 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉奕成
研究生(外文):I-CHENG Liu
論文名稱:改良式離散傅立葉通道估測技術於多種正交分頻多工通訊系統之應用
論文名稱(外文):Improved DFT-Based Channel Estimation Techniques for Various OFDM Communication Systems
指導教授:林容杉
口試委員:林容杉林嘉慶陳後守洪志偉郭耀文
口試日期:2014-07-29
學位類別:博士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:81
中文關鍵詞:通道估測離散傅立葉通道估測技術顯著通道偵測演算法
外文關鍵詞:Channel Estimation (CE)discrete Fourier transform (DFT)-based CEsignificant channel tap detector (SCTD) scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊環境中,通道估測是非常重要的一個環節。本論文介紹了一個在
時域的最小平方估測法在時域同步正交分頻多工系統。在近期的論文中,雙偽雜
訊為訊號標頭的時域同步正交分頻多工系統被提出,用於保護通道估測所使用的
訊號。在我們提出的方法中,利用了一些自我干擾消除的演算法,有效率的也即
時的消除多重路徑干擾、訊符內干擾以及訊符間干擾。本論文也提出了改良式離
散傅立葉通道估測技術於時域同步正交分頻多工系統。這個方法利用了顯著通道
偵測演算法提升整體系統的效能。其中的關鍵點在於本演算法可以有效的估測雜
訊的能量並且可以因此選擇出顯著的通道進而得到精準的時域估測通道響應。
Channel estimation is a very important issue in mobile communication
environment. This dissertation introduces a time domain least-squares (TDLS)
channel estimation (CE) technique for time domain synchronous orthogonal
frequency division multiplexing (TDS-OFDM). The dual PN-sequence padding
(DPNP) TDS-OFDM has recently been proposed in many papers for protecting the
signals for CE. The proposed technique takes advantage of several self-interference
cancelation (SIC) methods to effectively and timely reduce multipath interference
(MPI), inter-symbol interference (ISI) and inter-block interference (IBI). This
dissertation also proposes the modified discrete Fourier transform (DFT)-based
channel estimation technique for TDS-OFDM communication systems. The proposed
technique based on the concept of significant channel tap detector (SCTD) scheme
possesses the potentials to effectively improve the system performance of
TDS-OFDM systems. The proposed estimation scheme can also roughly predict the
noise power in order to choose the significant channel taps to estimate the channel
impulse response.
Contents
1 Introduction 1
2 System Structure 6
2.1 Basic Concept of OFDM System . . . . . . . . . . . . . . . . . . . . . 6
2.2 Conventional OFDM System . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Matrix Representation of OFDM System . . . . . . . . . . . . . . . . 13
2.4 PRP-OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 TDS-OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 TDS-OFDM System Structure . . . . . . . . . . . . . . . . . . 24
2.5.2 TDS-OFDM Frame Structure . . . . . . . . . . . . . . . . . . 25
2.6 Dual PN-Sequence Padding Frame Structure . . . . . . . . . . . . . . 28
3 Conventional OFDM Channel Estimation Techniques 31
3.1 Basic Concept of Channel Estimation in OFDM System . . . . . . . . 31
3.1.1 CTPA-Based CE . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 BTPA-Based CE . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 TD-Redundancy-Based CE . . . . . . . . . . . . . . . . . . . . 36
3.2 Frequency-Domain Channel Estimation . . . . . . . . . . . . . . . . . 37
3.2.1 Frequency-Domain Least Squares Channel Estimation . . . . . 37
3.2.2 DFT-Based Channel Estimation . . . . . . . . . . . . . . . . . 39
3.2.3 Significant Channel Tap Detector . . . . . . . . . . . . . . . . 40
3.3 Time-Domain Channel Estimation . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Time Domain Least Squares Channel Estimation . . . . . . . 41
4 Improved DFT-Based Channel Estimation Techniques in TDS OFDM
system 44
4.1 Time Domain Least Squares Channel Estimation . . . . . . . . . . . 45
4.1.1 Frequency Domain Equalizer . . . . . . . . . . . . . . . . . . . 50
4.2 Frequency Domain Least Squares Channel Estimation . . . . . . . . . 50
4.2.1 DFT-Based Channel Estimation and Significant Channel Tap
Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Proposed Channel Estimation . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Symbol Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 OLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 OLA with SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Simulation Result and Discussion 59
5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Comparative Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Optimal Estimated Noise Threshold . . . . . . . . . . . . . . . 60
5.2.2 BER Performance Results . . . . . . . . . . . . . . . . . . . . 63
6 Conclusions 70
Bibliography 72

List of Figures
2.1 The overall structure of the OFDM transmitter. . . . . . . . . . . . . 9
2.2 The influence of ISI in one OFDM symbol. . . . . . . . . . . . . . . . 10
2.3 The guard time insertion eliminates the ISI, but effect of multipath
with zero signal in guard time causes the ICI. . . . . . . . . . . . . . 11
2.4 OFDM symbol with cyclic extension. . . . . . . . . . . . . . . . . . 11
2.5 Analysis of OFDM system matrix form. . . . . . . . . . . . . . . . . 15
2.6 Analysis of OFDM system matrix form after removing cyclic prefix
step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 The block diagram of the CP-OFDM. . . . . . . . . . . . . . . . . . . 18
2.8 The block diagram of the PRP-OFDM. . . . . . . . . . . . . . . . . . 21
2.9 Comparison of the CP-OFDM and TDS-OFDM. . . . . . . . . . . . . 23
2.10 The block diagram of the TDS-OFDM. . . . . . . . . . . . . . . . . . 25
2.11 PN-sequence generator structure of Mode 1. . . . . . . . . . . . . . . 26
2.12 Difference of CP-OFDM and TDS-OFDM systems. . . . . . . . . . . 29
2.13 Signal frame format for DPNP TDS-OFDM systems. . . . . . . . . . 29
3.1 Operational concept of the DFT-based channel estimation . . . . . . 39
3.2 Block diagram of the SCTD . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 The channel estimation regions of time domain LS CE. . . . . . . . . 42
4.1 The frame structure of the TDS-OFDM. . . . . . . . . . . . . . . . . 46
4.2 The channel estimation regions of the proposed algorithm. . . . . . . 49
4.3 Proposed channel estimation for TDS-OFDM . . . . . . . . . . . . . 52
4.4 MSE of the system noise power and estimated noise power . . . . . . 55
4.5 The symbol recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Comparing MSE for different thresholds against SNR . . . . . . . . . 62
5.2 Significant path selection for channel with SNR = 5dB, = 1 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Significant path selection for channel with SNR = 5dB, = 3 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Significant path selection for channel with SNR = 5dB, = 5 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Significant path selection for channel with SNR = 30dB, = 1 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Significant path selection for channel with SNR = 30dB, = 3 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Significant path selection for channel with SNR = 30dB, = 5 under
CT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8 Comparing MSE performance with proposed algorithm under CT8. . 68
5.9 Comparing MSE performance with proposed algorithm under TU. . . 68
5.10 Comparing BER performance with proposed algorithm under CT8. . 69
5.11 Comparing BER performance with proposed algorithm under TU. . . 69

List of Tables
2.1 PN255 sequence generator state. . . . . . . . . . . . . . . . . . . . . . 27
2.2 System parameters of DTTB 8MHz bandwidth. . . . . . . . . . . . . 28
5.1 Delay power spectral density and  of COST 207. . . . . . . . . . . 60
5.2 System parameters of DPNP TDS-OFDM. . . . . . . . . . . . . . . . 61
5.3 Channel parameters of CT8 and TU 12-path. . . . . . . . . . . . . . 61
[1] A. R. S. Bahai and B. R. Saltzberg, Multi-carrier Digital Communications: The-
ory and Applications of OFDM, Norwell, MA: Kluwer Academic/Plenum, 1999.
[2] People’s Republic of China Patent 00 123 597.4, Terrestrial Digital Multime-
dia/Television Broadcasting System, Mar. 2001.
[3] People’s Republic of China Standard GB20600-2006, Framing Structure, Channel
Coding and Modulation for Digital Television Terrestrial Broadcasting System,
Aug. 2006.
[4] J. Fu, C. Y. Pan, Z. X. Yang and L. Yang, “Low-complexity equalization for
tds-ofdm systems over doubly selective channels,” IEEE Transactions on Broad-
casting, Vol. 51, No.
[5] Z. X. Yang, J. Wang, C. Y. Pan, L. Yang and Z. Han, “Channel estimation of
dmb-t,” Proceedings of the IEEE International Conference on Communications,
Circuits and Systems and West Sino Expositions, Vol. 2, pp. 1069-1072, 2002.
[6] Advanced Television Systems Committee, ATSC Digital Television Standard,
Document A/53, Sept. 1995.
[7] Advanced Television Systems Committee, Guide to The Use of The ATSC Digital
Television Standard, Document A/54, Oct. 1995.
[8] European Telecommunications Standards Institute, Framing Structure, Channel
Coding and Modulation for Digital Terrestrial Television, Document 300 744,
Ver. 1.4.1, 2001.
[9] Association of Radio Industries and Businesses, Terrestrial Integrated Services
Digital Broadcasting (ISDB-T) Specifications of Channel Coding, Framing Struc-
ture and Modulation, Sept. 1998.
[10] Y. Wu, E. Pliszka, B. Caron, P. Bouchard and G. Chouinard, “Comparison of
terrestrial dtv transmission systems: the atsc 8-vsb, the dvb-t cofdm, and the
isdb-t bst-ofdm,” IEEE Transactions on Broadcasting, Vol. 46, No. 2, pp. 101-
113, Jun. 2000.
[11] Y. Wu, S. Hirakawa, U. H. Reimers and J. Whitaker, “Overview of digital television
development worldwide,” Proceedings of the IEEE, Vol. 94, No. 1, pp. 8-21,
Jan. 2006.
[12] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson and P. O. Borjesson,
“Ofdm channel estimation by singular value decomposition,” IEEE Transactions
on Communications, Vol. 46, pp. 931-939, Jul. 1998.
[13] Y. Zhao, and A. Huang, “A novel channel estimation method for ofdm mobile
communication systems based on pilot signals and transform-domain processing,”
IEEE Transactions on Vehicular Technology, Vol. 46, pp. 931-939, 1998.
[14] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson and P. O. Borjesson, “On
channel estimation in ofdm systems,” IEEE Transactions on Vehicular Technol-
ogy, Vol. 2, pp. 815-819, Jul. 1995.
[15] Y. Kang, K. Kim and H. Park, “Efficient dft-based channel estimation for ofdm
systems on multipath channels,” IET Communications, Vol. 1, No. 2, pp. 197-
202, Apr. 2007.
[16] A. Ijaz, A. B. Awoseyila and B. G. Evans, “Low-complexity time-domain snr
estimation for ofdm systems,” IET Electronics Letters, Vol. 47, No. 20, pp. 1154-
1156, Sept. 2011.
[17] van Nee, Richard and Prasad, Ramjee, Ofdm for wireless multimedia communi-
cations, Boston: Artech House Publishers, 2000.
[18] J. G. Proakis, Digital communications, Mc-Graw Hill International Editions,
1995.
[19] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel
data transmission,” Bell Systems Technical Journal, vol. 46, pp. 1775-1796, December
1966.
[20] B. R. Saltzberg, “Performance of an efficient parallel data transmission system,”
IEEE Transactions on Communication Technology, pp. 805-813, December 1967.
[21] R. W. Chang and R. A. Gibby, “A theoretical study of performance of an orthogonal
multiplexing data transmission scheme,” IEEE Transactions on Com-
munication Technology, vol. 16, no. 4, pp. 529-540, 1968.
[22] L. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal
frequency division multiplexing,” IEEE Transactions on Communications, vol.
33, pp. 665-675, July 1985.
[23] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing
using the discrete fourier transform,” IEEE Transactions on Commu-
nication Tech-nology, vol. COM-19, pp. 628-634, October 1971.
[24] L. Hanzo, W. Webb, and T. Keller, Single- and multi-carrier quadrature ampli-
tude modulation, New York, USA: IEEE Press-John Wiley, April 2000.
[25] J. Fu, J. Wang, J. Song, C. Y. Pan and Z. X. Yang, “A simplified equalization
method for dual pn-sequence padding tds-ofdm systems,” IEEE Transactions on
Broadcasting, Vol. 54, No. 4, pp. 825-830, Dec. 2008.
[26] J. Wang, Z. Yang, C. Pan, J. Song and L. Yang, “Iterative padding subtraction
of the pn sequence for the tds-ofdm over broadcasting channels,” IEEE Trans-
actions on Consumer Electronics, Vol. 51, No. 4, pp. 1148-1152, Nov. 2005.
[27] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques
based on pilot arrangement in ofdm systems,” IEEE Transactions on Broadcast-
ing, vol. 48, no. 3, pp. 223-229, September 2002.
[28] B. Li, Y. Xu, and J. Choi, “A study of channel estimation in ofdm systems,” Pro-
ceedings of 2002 IEEE 56th Vehicular Technology Conference, September 2002,
pp. 894-898.
[29] C.-S. Yeh and Y. Lin, “Channel estimation techniques based on pilot arrangement
in ofdm systems,” IEEE Transactions on Broadcasting, vol. 45, no. 4, pp.
400- 409, December 1999. R.
[30] Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile ofdm
system,” IEEE Transactions on Consumer Electronics, vol. 44, no. 3, pp. 1122-
1128, August 1998.
[31] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided
channel estimation by wiener filtering,” Proceedings of 1997 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP97). Munich:
IEEE Signal Processing Society, April 1997, pp. 1845-1848.
[32] S. K. Wilson, R. E. Khayata, and J. M. Cioffi, “16-qam modulation with orthogonal
frequency-division multiplexing in a rayleigh-fading environment,” Proceed-
ings of 1994 IEEE 44th Vehicular Technology Conference. Stockholm: IEEE
Vehicular Technology Society, June 1994, pp. 1660-1664.
[33] P. Hoeher, “Tcm on frequency-selective land-mobile fading channels,” Proceed-
ings of International Workshop Digital Communications, Tirrenia, Italy, September
1991, pp. 317-328.
[34] M. Sandell and O. Edfors, “A comparative study of pilot-based channel estimators
for wireless ofdm,” Research Report / 1996:19. Div. Signal Processing, Lulea
Univ. Technology, Lulea, Sweden, no. No., September 1996.
[35] M.-H. Hsieh and C.-H. Wei, “Channel estimation for ofdm systems based on
comb-type pilot arrangement in frequency selective fading channels,” IEEE
Transactions on Consumer Electronics, vol. 44, no. 1, pp. 217-225, February
1998.
[36] F. Tufvesson and T. Maseng, “Pilot assisted channel estimation for ofdm in
mobile cellular systems,” Proceedings of 1997 IEEE 47th Vehicular Technology
Conference. Phoenix, AZ: IEEE Vehicular Technology Society, May 1997, pp.
1639-1643.
[37] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Borjesson,
“Ofdm channel estimation by singular value decomposition,” Proceedings
of IEEE 46th Vehicular Technology Conference, 1996. Atlanta, GA: IEEE Vehicular
Technology Society, April 1996, pp. 923-927.
[38] Y. Zhao and A. Huang, “A novel channel estimation method for ofdm mobile
communication systems based on pilot signals and transform-domain process-
ing,” Proceedings of 1997 IEEE 47th Vehicular Technology Conference. Phoenix,
AZ: IEEE Vehicular Technology Society, May 1997, pp. 2089-2093.
[39] J. Rinne and M. Renfors, “Optimal training and redundant precoding for block
transmissions with application to wireless ofdm,” IEEE Transactions Consumer
Electronics, vol. 42, no. 4, pp. 959-962, November 1996.
[40] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Borjesson,
“Ofdm channel estimation by singular value decomposition,” IEEE Transactions
on Communications, vol. 46, no. 7, pp. 931-939, July 1998.
[41] O. Seller, “Low complexity 2d projection-based channel estimators for mccdma,”
Proceedings of 15th IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications, 2004 (PIMRC 2004). Barselona: IEEE Communications
Society, September 2004, pp. 2283 - 2288.
[42] J. Park, J. Kim, C. Kang, and D. Hong, “Channel estimation performance analysis
for comb-type pilot-aided ofdm systems with residual timing offset,” Pro-
ceedings of IEEE 60th Vehicular Technology Conference, 2004 (VTC2004-Fall).
Los Angeles, CA: IEEE Vehicular Technology Society, September 2004, pp. 4376-
4379.
[43] O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Pilot-based channel estimation for
ofdm systems by tracking the delay-subspace,” IEEE Transactions on Wireless
Communications, vol. 3, no. 1, pp. 315-325, January 2004.
[44] H. Minn and V. K. Bhargava, “An investigation into time-domain approach for
ofdm channel estimation,” IEEE Transactions on Broadcasting, vol. 46, no. 4,
pp. 240-248, December 2000.
[45] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier fdma for uplink
wireless transmission,” IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp.
30- 38, September 2006.
[46] K.-Y. Han, S.-W. Lee, J.-S. Lim, and K.-M. Sung, “Channel estimation for
ofdm with fast fading channels by modified kalman filter,” IEEE Transactions
on Consumer Electronics, vol. 50, no. 2, pp. 443-449, May 2004.
[47] B. Li, Y. Xu, and J. Choi, “Channel estimation for lte uplink in high doppler
spread,” Proceedings of Wireless Communications and Networking Conference,
2008 (WCNC 2008). Las Vegas, NV: IEEE Communications Society, March 2008,
pp. 1126-1130.
[48] J. C. L. Ng, K. B. Letaief, and R. D. Murch, “Complex optimal sequences with
constant magnitude for fast channel estimation initialization,” IEEE Transac-
tions on Communications, vol. 46, no. 3, pp. 305-308, March 1998.
[49] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation
properties,” IEEE Transactions on Information Theory, vol. 38, no. 4,
pp. 1406-1409, July 1992.
[50] N. Levanon and E. Mozeson, Radar Signals. Wiley-IEEE Press, 2004.
[51] LTE, TS 36.211 (V8.5.0), Physical Channels and Modulation. 3GPP, 2009.
[52] B. Muquest, Z. Wang, G. B. Giannakis, M. Courville, and P. Duhamel, “Cyclic
prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans-
actions on Communications, vol. 50, no. 12, pp. 2136-2148, December 2002.
[53] B. Muquet, M. de Courville, G. B. Giannakis, Z. Wang, and P. Duhamel,
“Reduced-complexity equalizers for zero-padded ofdm transmissions,” Proceed-
ings of 2000 IEEE International Conference on Acoustics, Speech, and Signal
Processing. (ICASSP00). Istanbul: IEEE Signal Processing Society, June 2000,
pp. 2973-2976.
[54] M. Muck, M. de Courville, and P. Duhamel, “A pseudorandom postfix ofdm
modulator - semi-blind channel estimation and equalization,” IEEE Transactions
on Signal Processing, vol. 54, no. 3, pp. 1005-1017, March 2006.
[55] M. Muck, M. de Courville, X. Miet, and P. Duhamel, “Iterative interference suppression
for pseudo random postfix ofdm based channel estimation,” Proceedings
of 2005 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP05). Philadelphia, Pennsylvania, USA: IEEE Signal Processing
Society, March 2005, pp. 765-768.
[56] M. Muck, M. de Courville, M. Debbah, and P. Duhamel, “A pseudo random
postfix ofdm modulator and inherent channel estimation techniques,” Proceed-
ings of IEEE 2003 Global Telecommunications Conference. (GLOBECOM 03).
San Francisco: IEEE Communications Society, December 2003, pp. 2380-2384.
[57] L. Gui, Q. Li, B. Liu, W. Zhang, and C. Zheng, “Low complexity channel estimation
method for tds-ofdm based chinese dttb system,” IEEE Transactions
Consumer Electronics, vol. 55, no. 3, pp. 1135-1140, August 2009.
[58] F. Yang, J. Wang, J. Wang, J. Song, and Z. Yang, “Novel channel estimation
method based on pn sequence reconstruction for chinese dttb system,” IEEE
Transactions Consumer Electronics, vol. 54, no. 4, pp. 1583-1589, November
2008.
[59] Z.-W. Zheng and Z.-G. Sun, “Robust channel estimation scheme for the tdsofdm
based digital television terrestrial broadcasting system,” IEEE Transac-
tions Consumer Electronics, vol. 54, no. 4, pp. 1576-1582, November 2008.
[60] G. Liu and J. Zhang, “Itd-dfe based channel estimation and equalization in
tdsofdm receivers,” IEEE Transactions Consumer Electronics, vol. 53, no. 2, pp.
304-309, May 2007.
[61] B. Song, L. Gui, Y. Guan, and W. Zhang, “On channel estimation and equalization
in tds-ofdm based terrestrial hdtv broadcasting system,” IEEE Transactions
Consumer Electronics, vol. 51, no. 3, pp. 790-797, August 2005.
[62] Y. Ma, N. Yi, and R. Tafazolli, “Channel estimation for prp-ofdm in slowly
timevarying channel: first-order or second-order statistics?” IEEE Signal Pro-
cessing Letters, vol. 13, no. 3, pp. 129-132, March 2006.
[63] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for
block transmissions with application to wireless ofdm,” IEEE Transactions on
Communications, vol. 50, no. 12, pp. 2113-2123, December 2002.
[64] B. Sklar, “Rayleigh fading channels in mobile digital communications: parts i
and ii,” IEEE Communications Magazine, Vol. 35, pp. 90-110, Jul. 1997.
[65] T. S. Rappaport, Wireless communications: principles and practice, 2nd ed,
Upper Saddle River, NJ: Prentice Hall, 2002.
[66] J. G. Andrews, A. Ghosh and R. Muhamed, Fundamentals of wimax: under-
standing broadband wireless networking, Upper Saddle River, NJ: Prentice Hall,
2007.
[67] Z. Yang, L. Tong and L. Yang, “Outage probability comparison of cp-ofdm and
tds-ofdm for broadcast channels,” Proceedings of the IEEE Global Telecommu-
nications Conference, Vol. 1, pp. 594-598, Nov. 2002.
[68] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Borjesson,
“Analysis of dft-based channel estimators for ofdm,” Wireless Personal Commu-
nications, Vol. 12, No. 1, pp. 55-70, Jan. 2000.
[69] A. Dowler, A. Doufexi and A. Nix, “Performance evaluation of channel estimation
techniques for a mobile fourth generation wide area ofdm system,” IEEE
Transactions on Vehicular Technology, Vol. 4, pp. 2036-2040, Sept. 2002.
[70] S. Tabbane, Handbook of mobile radio networks, Norwood, MA: Artech House,
2000.
[71] M. Patzold, Mobile fading channels, New York, NY: John Wiley and Sons, 2002.
[72] J. Song, Z. Yang, L. Yang, K. Gong and C. Pan, “Technical review on chinese
digital terrestrial television broadcasting standard and measurements on some
working modes,” IEEE Transactions on Broadcasting, Vol. 53, No. 1, pp. 1-7,
Mar. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top