跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/06 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭宇成
研究生(外文):Cheng, Yu-Cheng
論文名稱:氧化鋅紙與銀紙之製作與特性量測
論文名稱(外文):Fabrication and characterization of ZnO paper and Silver paper
指導教授:吳幼麟
指導教授(外文):Wu, You-Lin
口試委員:胡振國林錦正
口試委員(外文):Hwu, Jenn-GwoLin, Chin-Cheng
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:67
中文關鍵詞:氧化鋅氧化鋅紙銀紙化學還原法
外文關鍵詞:Zinc oxideZnO paperSilver paperChemical Reduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由於低成本且製作簡單,將奈米粒子沉積於紙上在生醫檢測上開闢了新的應用領域。在本論文中,我們試圖將沉積氧化鋅與銀奈米粒子跟纖維紙結合形成氧化鋅紙與銀紙,並對其做特性量測。我們使用醋酸鋅與氫氧化鈉化學還原法製備氧化鋅紙、硝酸鋅與硼氰化鈉化學還原法製備銀紙。再氧化鋅紙的備製中,本論文中也提出使用噴塗機先在纖維紙上成長氧化鋅種晶層(ZnO seed layer)後再使用化學還原法製備氧化鋅紙,並以沉積時間50小時之氧化鋅紙製備出氧化鋅+銀紙。經由掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)確認了氧化鋅及銀奈米粒成長於纖維紙上,其上之氧化鋅奈米粒子粒徑大約14nm ~ 39nm,而銀奈米粒子粒徑大約28nm ~ 57nm,氧化鋅混合銀奈米粒子之粒徑大約31nm ~ 66nm。透過能量色散X射線光譜儀(Energy-dispersive X-ray spectroscope,EDX)的分析,可發現氧化鋅紙之主要材料為Zn與O,銀紙之主要材料為Ag。再由X光繞射儀(X-Ray Diffraction,XRD)之分析,可發現氧化鋅紙之晶體結構主要晶向在(100)與(101),而銀紙之晶體結構主要晶向在(111)。對於氧化鋅/銀紙,經EDX可發現其主要材料同時包含了氧化鋅與銀,而XRD的分析也確認氧化鋅+銀紙之主要晶向為(100)的氧化鋅及(111)的銀。
Depositing nanoparticles on paper has opened new area of application in biomedical testing due to its low-cost and easy fabrication. In this thesis, attempt has been made to deposit ZnO nanoparticles, Ag nanoparticles and ZnO + Ag nanoparticles on cellulose paper and characterize those nanoparticles on cellulose paper. Chemical reduction of zinc acetate dehydrate and sodium hydroxide were adopted for the deposition of ZnO, while that of AgNO3 and NaBH4 were for the deposition of Ag nanoparticles on cellulose paper. In particular, we proposed to use spray pyrolysis for the first time to prepare the ZnO seed layer for ZnO paper fabrication, and ZnO paper for fifty hours of deposition time for the fabrication of ZnO + Ag paper. By using the scanning electron microscopy (SEM), we confirmed that ZnO nanoparticles and Ag nanoparticels were successfully deposited on the cellulose paper. It is found that the average diameter of ZnO nanoparticles on cellulose paper was about 14 nm - 39nm, while that of Ag diameter on cellulose paper was about 28nm - 57nm, and that of ZnO + Ag nanoparticles paper was about 31nm - 66nm. Energy-dispersive X-ray spectroscopy (EDX) results show that deposited materials are composed of Zn and O for ZnO paper, and Ag for Ag paper. From the X-ray diffraction (XRD) spectra of the ZnO paper, it is found that the preferential orientation of the deposited ZnO nanoparticles on cellulose paper is (100) and (101), while that of the deposited Ag particles on cellulose paper is (111). For ZnO + Ag paper, the EDX analysis result confirms that the deposited materials include both the ZnO and Ag, and its XRD result shows that the preferential orientations are (100) ZnO and (111) Ag.
目次
致謝辭 I
摘要 II
Abstract III
目次 V
圖次 VII
表次 IX
第一章 緒論 1
1-1前言 1
1-2研究動機及目的 2
1-3 論文架構 2
第二章 文獻回顧 4
2-1氧化鋅簡介 4
2-2 銀金屬簡介 5
2-3 奈米粒子的特性 6
2-4 奈米粒子之製備 8
2-5紙之介紹與應用 10
2-5-1 纖維紙之簡介 11
2-5-2製備氧化鋅紙 11
2-5-3氧化鋅紙之應用 13
第三章 實驗流程與樣品製備 25
3-1 實驗用材料與藥品規格 25
3-2 實驗儀器與裝置 26
3-2-1 超音波噴塗機 26
3-2-2 掃描式電子顯微鏡 26
3-2-3 XRD粉末繞射儀 26
3-3實驗步驟 27
3-3-1氧化鋅紙之製備 27
3-3-2 銀紙之製備 28
3-3-3氧化鋅/銀紙之製備 29
第四章 結果與討論 33
4-1 表面形貌分析 33
4-1-1 氧化鋅紙之形貌分析 33
4-1-2 銀紙之形貌分析 34
4-1-3氧化鋅/銀紙之形貌分析 35
4-2 晶體結構分析 36
第五章 結論 63
參考文獻 64

圖次
圖2-1.ZnO晶體結構示意圖[19] 18
圖2-2.ZnO相關的缺陷能帶圖[22][23] 18
圖2-3.溶膠-凝膠法製備奈米粉體的基本過程[46] 19
圖2-4.微乳液法製備流程[59] 19
圖2-5.纖維素之分子式[58] 20
圖2-6.纖維素之分子結構[53] 20
圖2-7[11].(A) 氧化鋅紙證實了晶體結構之XRD譜圖;(B) 纖維紙之SEM;(C)氧化鋅紙之SEM;(D) 氧化鋅奈米柱之高倍率SEM,奈米柱長度為500~1000 nM,直徑為40~100 nM 21
圖2-8[10].SEM顯示(A)纖維紙;(B)成長氧化鋅奈米粒子;(C) 10mM之氧化鋅奈米柱生長10小時在紙張上;(D) 10mM之氧化鋅奈米柱生長20小時在紙張上;(E) 20mM之氧化鋅奈米柱生長10小時在紙張上;(F) 20mM之氧化鋅奈米柱生長20小時在紙張上 22
圖2-9[10].纖維素與氧化鋅奈米粒子示意圖 23
圖2-10[10].抑制區的量測 23
圖2-11[11]. (A) 應變測量承受靜載荷示意圖;(B) 複合傳感器作為應變之IV曲線;(C) 複合傳感器的響應之拉伸載荷;(D) 複合傳感器的響應之循環載荷 24
圖3-1.實驗步驟流程圖 30
圖3-2.化學還原法製備氧化鋅紙示意圖 31
圖3-3.超音波噴塗ZNO Seedlayer於纖維紙示意圖 31
圖3-4.化學還原法製備銀紙示意圖 32
圖3-5.化學還原法製備氧化鋅/銀紙示意圖 32
圖4-1.纖維紙SEM影像 37
圖4-2.30小時之氧化鋅紙SEM影像 38
圖4-3.50小時之氧化鋅紙SEM影像 39
圖4-4.72小時之氧化鋅紙SEM影像 40
圖4-5.EDX分析氧化鋅紙元素成分 41
圖4-6.噴塗ZnO Seedlayer之纖維紙SEM,(A)100°C;(B)150°C 42
圖4-7.噴塗ZnO Seedlayer之纖維紙EDX,(A)100°C;(B)150°C 43
圖4-8.溫度100°C噴塗ZnO Seedlayer之氧化鋅紙SEM影像,(A)30hr;(B)50hr;(B)72hr 44
圖4-9.溫度150°C噴塗ZnO Seedlayer之氧化鋅紙SEM影像,(A)30hr;(B)50hr;(B)72hr 45
圖4-10.EDX分析溫度100°C塗ZnO Seedlayer之氧化鋅紙元素成分 46
圖4-11.EDX分析溫度150°C塗ZNO Seedlayer之氧化鋅紙元素成分 47
圖4-12.Zn/O對沉澱時間關係圖 48
圖4-13.氧化鋅粒徑大小對時間關係圖 48
圖4-14.溫度100°C噴塗ZnO Seedlayer之氧化鋅紙,氧化鋅粒徑大小對時間關係圖 49
圖4-15.溫度150°C噴塗ZNO Seedlayer之氧化鋅紙,氧化鋅粒徑大小對時間關係圖 49
圖4-16.30小時之銀紙SEM影像 50
圖4-17.50小時之銀紙SEM影像 51
圖4-18.72小時之銀紙SEM影像 52
圖4-19.EDX分析銀紙元素成分 53
圖4-20.Ag對沉澱時間關係圖 54
圖4-21.Ag/O對沉澱時間關係圖 54
圖4-22. 銀粒徑大小對沉澱時間關係圖 55
圖4-23.30小時之氧化鋅/銀紙SEM影像 56
圖4-24.50小時之氧化鋅/銀紙SEM影像 57
圖4-25.72小時之氧化鋅/銀紙SEM影像 58
圖4-26.EDX分析氧化鋅/銀紙元素成分 59
圖4-27.ZnO/Ag對沉澱時間關係圖 60
圖4-28.氧化鋅/銀粒徑大小對時間關係圖 60
圖4-29.氧化鋅紙XRD光譜圖 61
圖4-30.銀紙XRD光譜圖 61
圖4-31.氧化鋅/銀紙XRD光譜圖 62

表次
表2-1.氧化鋅基本性質[19] 15
表2-2.銀的基本性質[29] 16
表2-3.奈米粉末之溶點變化[31] 單位: ℃ 16
表2-4.製備氧化鋅奈米粒子相關文獻整理[15] 17
表2-5.製備銀奈米粒子相關文獻整理 17


[1]鄭育玲,“合成奈米銀粒子及其在多孔二氧化鈦上之特性研究”(2005).
[2]傅睿涵,“銀奈米粒子表面電漿共振效應對釔鋁石榴石螢光強度的影響”,國立清華大學化工所,(2010)
[3] H. Lee, K. Lee, S. Lee, K. Koh, J.-Y. Park, K. Kim, and F.Rotermund, “Ultrafast third-order optical nonlinearities of vertically aligned ZnO nanorods,” Chem. Phys. Lett. 447,86–90 (2007).
[4] (a) Daniel, M. C.; Astruc, D. “Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis,and Nanotechnology,”(2004). (b) Sun, Y. P.;Fu, K. F.; Lin, Y.; Huang, “Functionalozed Carbon Nanotubes: Properties and Applicatoins,”(2002) (c) Whitesides,G. M. “ Nanoscience, Nanotechnology, and Chemistry”(2005) (d) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay,J. M.; Doose, S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.;Weiss, S. “Quantum dots for live cells,in vivo imaging,and diagnostics. ”(2005) (e) Li, Y. M.; Somorjai, G. A. “Nanoscale Advances in Catalysis and Energy Applications ”(2010)
[5](a) Burda, C.; Chen, X. B.; Narayanan., N.; El Sayed, M. A. “Chemistry and properties of nanocrystals of different shapes. ”(2005)
(b) Murphy, C. J.; San, T. K.; Goel, A. M.; Orendorff, C. J.; Gao,J. X.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. “Anisotropic metal nanoparticles:Synthesis,assembly,and optical applications. ”(2005)
(c)Tang, Z. Y.; Kotov, N. A. Adv. “One-Dimensional Assemblies of Nanoparticles:Preparation,Properties,and Promise .”(2005)
[6]侯鎮球, “高中職奈米材料課程實驗之設計-利用化學與電化學還原法製備銀奈米粒子",國立中正大學化學暨化學工程研究所(2006).
[7]汪富瑜, “聚丙烯醚含聚乙烯亞胺擬樹枝狀高分子之合成與其在製備銅奈米粒子之應用",國立成功大學化學工程學系(2002).
[8] Dankovich, T. A.; Gray, D. G. “Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. "(2011)
[9] Ghule, K.; Ghule, A. V.; Chen, B.-J.; Ling, Y.-C. “Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. "(2011)
[10] Mayuree Jaisai, Sunandan Baruah, and Joydeep Dutta, “Paper modified with ZnO nanorods–antimicrobial studies”.
[11] Hemtej Gullapalli, Venkata S. M. Vemuru, Ashavani Kumar,“Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor”.
[12] Alejandro J. Gimenez,J. M. Ya´n˜ez-Limo´n,and Jorge M. Seminario,“ZnO-Paper Based Photoconductive UV Sensor”
[13]陳秀連,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究",國立台灣科技大學材料科技研究所, (2002)
[14]鐘明芳, “參雜錳之氧化鋅奈米粒子的製備與特性分析",國立高雄應用科技大學化學工程系與材料工程系碩士班,(2009)
[15]徐志宗, “氧化鋅奈米結晶之製備與分散",國立中央大學化學工程與材料工程學研究所,(2004)
[16]V.kumar and B.S.R.Sastry, “Thermal expansion coefficient of binary semiconductors, " (2001).
[17]E.L.Paradis and A.J.Shuskus, “R.f.sputtered epitaxial ZnO films on sapphire for integrated optics, "Thin Solid Films38,131(1976)
[18]黃煜證,“披覆含有共軛樹枝狀寡噻吩配位子之釕金屬複合物的氧化鋅奈米粒子之合成與應用",國立交通大學材料科學與工程研究所,(2010)
[19]Y.Chen,D.M.Bagnal,H.J.Koh,K.T.Park,K.Hiraga,Z.Zhu,and T.Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire:Growth and characterization, "J.Appl.phys.84,3912(1998).
[20]Naoki Satoh,Shunji Bandow,Keisaku Kimura, “Dispersibility of fine metal particles in organic solvents, "
[21] J. Xu, Q. Pan, Y. Shun, and Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor,”(2000)
[22]X. Wei, B. Man, C. Xue, C. Chen , and M. Liu, "Blue Luminescent Center and Ultraviolet-Emission Dependencer of ZnO Films Prepared by Pulsed Laser Deposition, "Jpn.J.Appl. Phys.45,8586(2006).
[23]B.Lin, Z.Fu,and Y.Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates, "
[24]周更生,李賢學,高振裕,盧育杰“功能性粉末:奈米銀".
[25]A.B.G.Lansdown,Silver in healthcare:its antimicrobial efficacy and safety in use.Issues ub toxicology,2010,Cambrige:Royal Society of Chemsitry.
[26]S.Hoffmann,Silver sulfadiazine:an antibacterial agent for topical use in burns.Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery,1984.18(1):p.119-126.
[27]R.Vonberg,D.Sohr,J.Bruderek,and P.Gastmeier, "Impact of a silver layer on the membrane of tap water filters on the microbiological quality of filtered water".(2008)
[28]J.E.Stout and V.L.Yu, "Experiences of the first 16 hospitals using copper-silver ionization for Legionella control:Implications for evaluation of other disinfection modalities. "
[29]柯清水,“化工化學大辭典",正文書局有限公司(2000).
[30]Duff,D.G.;Baiker,A;“A new hydrosol of gold clusters. 1. Formation and particle size variation."
[31]王崇人,科學發展,2002,354,48-51。
[32]莊萬發編撰, “超微粒子理論應用",復漢出版社1994.
[33]蘇品書撰, “超微粒材料技術", 復漢出版社1989.
[34] Ahmadi TS1, Wang ZL, Green TC, Henglein A, El-Sayed MA.. “Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles"
[35] Kuts, P. S.; Kalinina, L. S.; Pikus, I. F. “Hygroscopic properties of cellulose materials for electrical insulation"
[36] Xiao Kang Zhao,Youxin Yuan and Janos H. Fendler . “Size-quantized semiconductor particles formed at monolayer surfaces."
[37]Alivisatos,A.P. “Semiconductor clusters,nanocrystals,and quantum dots."
[38]T.Linnert,P.Mulvaney,A.Henglein, “Photochemistry of colloidal silver particles: the effects of nitrous oxide and adsorbed cyanide ion"
[39]J.M.Seminario,C.E.De la Cruz,P.A.Derosa, “A Theoretical Analysis of Metal-Molecule Contacts"
[40]黎佩玲, “奈米氧化鋅的製備與應用",中國紡織工業研究中心(2003).
[41]郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造", 國立台灣大學化學系及凝態中心.
[42] Bahnemann D.W., Kormann C. and Hoffmann M.R., “Preparation and Characterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study”
[43]Zheng,J.;Stevenson,M.S.;Hikida,R.S.;Van Patten,P.G. “Influence of PH on dendrimer-protected nanoparticles. ”
[44]Keki,S.;Torok,J.;Deak,G.;Daroczi,L.;Zsuga,M.“Silver Nanoparticles by PAMAM-Assisted Photochemical Reduction of Ag(+). ”
[45] J. Cong, Y. Fan, X. Yang, and Z. Zhang, “ Architecture and Synthesis for Multi-Cycle Communication ”
[46]祁紅璋, 李成魁, 趙慎強, 王宇鑫, “奈米粉體的溶膠-凝膠法製備技術", 同濟大學材料科學與工程學院,上海市金屬功能材料開發應用重點實驗室.
[47] LI Zhaohui,DAI Wei,FU JiQuan,“Advances in preparation of nano-catalyst by micro-emulsification", School of Materials Science & Engineering,Beijing Institute of Clothing Technology (2008).
[48]K. Esumi, N. Ishizuki, K. Torigoe, H. Nakamura, K. Meguro, “Preparation of colloidal silver using various reductants in the presence of copolymers of vinyl alcohol-N-vinyl pyrrolidone." (2003)
[49] K. S. Chou, C.Y. Ren, Mater. “Synthesis of nanosized silver particles by chemical reduction method."(2000)
[50]C.Y.Chien, “Prepare Silver Nano-Particles with Various Sizesand Study the Particle’s Size-Effect on the Surface Enhanced Raman Scattering of Benzonic Acid Solutions"(2007).
[51] Hartley, I. D.; Wood, L. J. “Hygroscopic properties of densified softwood pellets"
[52]T.A.Dankovich and D.G.Gray, “Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. "
[53]Vahid Khoshkava, “Polypropylene(PP)nanocomposites incorporating nanocrystalline cellulos(NCC) "Department of Chemical Engineering McGill Univeristy, Montreal, Canada.(2013)
[54] Rincon, A.G.; Pulgarin, C. “Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of(suspended–fixed) TiO2 concentration "
[55] Cho, M.; Chung, H.; Choi, W.; Yoon, J. “ Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. "
[56] Kikuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A. “ photocatalytic bactericidal effect of Tio2 thin film:dynamic view of the active oxygen species responsible for the effect."
[57] Kalyani Ghule, Anil Vithal Ghule, Bo-Jung Chen and Yong-Chien Ling,“Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. "
[58] Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri. “Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. "
[59]李朝暉,戴偉,傅吉全, “微乳液法製備奈米催化劑的應用研究進展"北京服裝學院材料科學與工程學院,北京重點實驗室;中石化北京工研究院(2008).
[60]汪建民, “材料分析, "(中國科學學會,新竹,1998)。
[61]宋湘平, “HfO2/ZnO奈米柱疊層電阻式記憶體之製作與特性量測",國立暨南國際大學電機工程學系碩士論文(2013) .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top