(18.206.177.17) 您好!臺灣時間:2021/04/23 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡宗緯
研究生(外文):Chung-Wei Chien
論文名稱:移動式機器人之沿牆行進控制設計
論文名稱(外文):Mobile-Robot Wall-Following Control Design
指導教授:吳俊德吳俊德引用關係
指導教授(外文):Gin-Der Wu
口試委員:莊家峰洪志偉
口試委員(外文):Chia-Feng JuangJeih-weih Hung
口試日期:2014-06-25
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:34
中文關鍵詞:機器人自走車紅外線感測器CPU
外文關鍵詞:mobile-robotInfrared SensorsCPU
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個能夠沿著牆邊走的機器人自走車,此機器人自走車是分別由五個紅外線感測器來感測車身置於何種環境中,並做出精確的距離判斷後,接著選擇相對應的運行模式,這五個紅外線感測器中分別置於車頭和車旁45度和90度左右兩個方向,隨著這些感測器所偵測到的值,傳送到本實驗室自有的CPU做完處理後,選擇該要進行的運轉模式並控制機器人馬達的正反轉,來完成相對應的動作。最後我們實現此系統並且在實際環境中測試使用,結果顯示機器人自走車確實可以完美的實現我們所要的沿邊路徑行走。

A mechanism of robot vehicle that can walk along the wall was proposed in this thesis. The main part of the robot vehicle is consists of five SHARP short-distance infrared sensors ,two PWM servo motor and ALTERA DE0-Nano experimental board. One of the short-distance infrared sensors was installed on the front, the other two infrared sensors were in the left and right sides which has 45 degree angle from the front, and the last two sensor were also in both sides but they are vertical from the front. By the cooperation of these infrared sensors which were considered about their position and angle. The mobile-robot’s scanning range could up to 180 degrees.
By receiving signal of infrared sensors from different directions and deliver them to CPU which is developed by ourselves. After a series of calculation and with the writing of firmware. The best executing mode could be choice exactly and then make the corresponding action to control motor's rotation. Finally, we implement this system and test in the actual environment. The results showed that the robot vehicle can achieve functions which we look forward to.

Contents
Acknowledgement…………………………………………………………………………I
Chinese Abstract………………………………………………………………………II
English Abstract………………………………………………………………………III
Content……………………………………………………………………………………IV
List of Figures……………………………………………………………………………VI
List of Tables……………………………………………………………………………VIII
Chapter 1 Introduction…………………………………………………………………1
1.1 Motivation…………………………………………………………………………1
1.2 Related Application………………………………………………………………2
1.3 Related Research…………………………………………………………………3
1.4 Purpose ……………………………………………………………………………4
1.5 Paper Architecture…………………………………………………………………4
Chapter 2 System Introduction…………………………………………………………5
2.1 Hardware Architecture……………………………………………………………5
2.2 System Architecture……………………………………………………………12
Chapter 3 Algorithm process………………………………………..…………………17
3.1 Flow Chart of Border-detection ………………………………………………..17
3.2 Back Mode………………………………………………………………………18
3.3 Border Mode……………………………………………………………………19
3.4 Left Border Mode………………………………………………………………20
3.5 Right Border Mode………………………………………………………………22
Chapter 4 Experiment Result………………………………………………………23
4.1 Result of implementation………………………………………………………23
4.2 The experimental result………………………………………………………24
4.3 Comparison of experimental results…………………………………………28
Chapter 5 Conclusion………………………………………………………………31
Bibliography……………………………………………………………………………32


List of Figures
Fig. 2.1.1 Top view………………………………………………………………………5
Fig. 2.1.2 Short distance sensor…………………………………………………………6
Fig. 2.1.3 Sensor schematic……………………………………………………………6
Fig. 2.1.4 Servo Motor…………………………………………………………………7
Fig. 2.1.5 Right rotation…………………………………………………………………8
Fig. 2.1.6 Left rotation…………………………………………………………………8
Fig. 2.1.7 Stop…………………………………………………………………………8
Fig. 2.1.8 Altera DE0-Nano board……………………………………………………9
Fig. 2.1.9 Architecture of CPU………………………………………………………10
Fig. 2.2.1 Architecture of DE0………………………………………………………12
Fig. 2.2.2 Core Architecture…………………………………………………………13
Fig. 2.2.3 Pin Figure…………………………………………………………………16
Fig. 3.1.1 Flow Chart of Border-detection……………………………………………17
Fig. 3.2.1 Back Mode…………………………………………………………………18
Fig. 3.3.1 Wall following mode………………………………………………………19
Fig. 3.4.1 Left Wall following mode………………………………………………20
Fig. 3.5.1 Right Wall following mode………………………………………………22
Fig. 4.1.1 Overlook of Mobile-Robot…………………………………………………23
Fig. 4.1.2 Back Overlook of Mobile-Robot……………………………………………23
Fig. 4.2.1 Back Status…………………………………………………………………24
Fig. 4.2.2 Tern-right Status……………………………………………………………25
Fig. 4.2.3 Tern-left Status……………………………………………………………25
Fig. 4.2.4 Tern-right of convex status…………………………………………………26
Fig. 4.2.5 Tern-left of convex status…………………………………………………26
Fig. 4.2.6 S-shape Status………………………………………………………………27
Fig. 4.3.1 Back mode path……………………………………………………………28
Fig. 4.3.2 Unmodified path……………………………………………………………28
Fig. 4.3.3 Comparison chart……………………………………………………………29

List of Tables
Table 2.2.1 Chart of External Interrupt…………………………………………………15

[1] J. Cesarone and K. F. Eman, “Mobile robot routing with dynamic programming,”
J. Manufact. Syst., vol. 8, no. 4, pp. 257-266, 1989.
[2] J. H. Connell, Minimalist Mobile Robotics. Boston: Academic, 1990.
[3] J. Barraquand and J. C. Latombe, “On Nonholonomic Mobile Robots and Optimal
Maneuvering,” Proc. of IEEE Int. Conf. on Intelligent Control, pp. 340-347, 1989.
[4] Li T.-H.S, Shih-Jie Chang and Wei Tong, “Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors”, IEEE Transactions on Fuzzy
System, Vol.12, No.4, 2004
[5] S. G. Goodridge, M. G. Kay and R C. Luo, “Multilayered Fuzzy Behavior
Fusion for Real-Time Reactive Control of System with Multiple Sensor”,
IEEE Trans. on Industrial Electronics, vol 43, no.3, June 1996.
[6] C. G. Rusu, I. T. Birou, E. Szoke, “Fuzzy Based Obstacle Avoidance System”,
Technical University of Cluj-Napoca, 2009.
[7] J. T. Cho, and B. H. Nam, “A Study on the Fuzzy Control Navigation and the Obstacle Avoidance of Mobile Robot Using Camera”, Department of Electrical and Computer Engineering Kangwon National University, Chunchon, Korea, pp. 2993-2997, 2000.
[8] K. N. Faress, M. T. El-Hagry, A. A. El-Kousy, “Fuzzy Modeling of a Wheeled
Mobile Robot”, Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Electronics Research Institute, Dokki, Cairo, Egypt, 2005.

[9] C. Acosta and R. G. Moras, “Path planning simulator for a mobile robot,” Comput.
Indust. Eng., vol. 19, no. 1-4, pp. 346-350, 1990.

[10] C. C. Wang, C. T. Shen, “Implementation of Wireless Image Tracking for Wheeled
Mobile Robots”, the 3rd Intetnational Conference on Innovative Computing
Information and Control, Chienkuo Technology University, Changhua City, Taiwan,
2008.
[11] S. Park, and S. Hashimoto, “Autonomous Mobile Robot Navigation Using Passive RFID in Indoor Environment”, IEEE Transactions on Industrial Electronics, Vol. 56, NO. 7, July 2009.
[12] Z. Fan, Y. Koren and D. Wehe, “Tracked mobile robot control:hybrid approach”,
Control Engineering Practice, Vol. 3, No. 3, pp.329-336, 1995.
[13] C. H. Hsieh, M. L. Wang, L. W. Kao, and H. Y. Lin, “Mobile Robot Localization and Path Planning Using an Omnidirectional Camera and Infrared Sensors”, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, National Chung Cheng University Chiayi, Taiwan, pp.1947-1952, 2009.
[14] X. Lebegue and J.K. Aggarwal, Significant line segments for an indoor mobile robot,
IEEE Transactions on Robotics and Automation, vol.9, pp. 801-806, 1993
[15] R. G. Wilson, “Modeling and Calibration of Automated Zoom Lenses”, CMU
Robotics Institute Technique Report, 1994.
[16] Neo, S.S. and Er, M.J., "Adaptive fuzzy control of robot manipulators" Control
Applications, 1995, Proceedings of the 4th IEEE Conference on, pp. 724-729, 1995
[17] Chih-Lyang Hwang and Shau-Fu Chao, " A fuzzy-model-based variable structure control for robot arms: theory and experiments", Systems, Man and Cybernetics, 2004 IEEE International Conference on pp.5252-5258, 2004

[18] Vu Minh Hung and Uhn Joo Na, "Adaptive neural fuzzy control for robot manipulator friction and disturbance compensator", Control, Automation and Systems, 2008. ICCAS 2008. International Conference on, pp 2569-2574, 2008.
[19] Ham, C. and Qu, Z. and Johnson, R., "Robust fuzzy control for robot manipulators"
Control Theory and Applications, IEE Proceedings -Volume: 147, Issue: 2, pp 212-216, 2000.
[20] Farhi, O. and Chervenkov, Y., "Optimal fuzzy control of autonomous robot car",
Intelligent Systems, 2008. IS '08. 4th International IEEE Conference, pp 4-62~4-65
, 2008
[21] DE0_Nano_User_Manual_v1.2

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔