跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊志
研究生(外文):Chun-Chih Jared Liu
論文名稱:HURP透過提高穩定性微管的穩定度促進高基氏體之組成
論文名稱(外文):HURP Regulates Golgi Structure via Stabilizing Stable Microtubule
指導教授:余長澤
指導教授(外文):Chang-Tze Ricky Yu
口試委員:蘇立仁陳昶翰邱紹智
口試委員(外文):Li-Jen SuChang-Han ChenShao-Chih Chiu
口試日期:2014-01-15
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:HURPPRMT5TRIP11PP2CβAurora-Aglu-α-tubulinstable MTs高基氏體磷酸化甲基化
外文關鍵詞:HURPPRMT5TRIP11PP2CβGolgiAurora-Aglu-α-tubulinstable MTsphosphorylationmethylation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
高基氏體是細胞重要之胞器,負責修飾、包裹、與分類運送來自於粗糙內質網製造的蛋白質,脊椎動物之高基氏體位於細胞核周遭中心體(centrosome)附近,由許多扁平囊袋組成新月形或緞帶(Ribbon)結構。已知細胞內有多種因子可以調節高基氏體的組成,包括多種調節因子以及微管(microtubule)。高基氏體已知可與一小撮特殊微管連結,此微管性質穩定,稱為穩定性微管(stable microtubule) ,其上的α-tubulin被發現常進行蛋白質去酪氨酸化(detyrosination)或乙醯化(acetylation)等後轉譯調節。雖然早有文獻指出,當細胞內所有的微管被去聚合化後(depolymerization),會促使高基氏體解構,但尚無證據指出此穩定性微管是否與高基氏體的組成有直接關係;此外,關於此穩定性微管如何被調節的研究至今仍有待闡明。本研究發現了一個可以穩定染色體兩側近端紡錘絲的蛋白HURP,在被Aurora-A磷酸化於serine 725(HURP p725)後,於G1 phase可以分佈到穩定性微管上;利用 RNAi 壓抑HURP表現後,穩定性微管結構縮小消退,高基氏體結構碎裂(Fragmentation)。而穩定性微管結構主要為glu-α-tubulin,是α-tubulin經由carboxypeptidase剃除其最後一個胺基酸tyrosine而形成,當處理carboxypeptidase 抑制劑 parthenolide或利用 RNAi 壓抑carboxypeptidase後,glu-α-tubulin表現減少,高基氏體碎裂;在RNAi 壓抑HURP的細胞中重新表現glu-α-tubulin將會使使碎裂的高基氏體重新組裝成完整的Ribbon結構,顯示穩定性微管有助於高基氏體的形成,而HURP透過穩定glu-α-tubulin穩定度,調控高基氏體結Ribbon結構。HURP p725除了會穩定此微管外,也會和高基氏體的主要調節蛋白TRIP11有交互作用並調節此蛋白之位置。使用HURP serine 725模擬被Aurora-A磷酸化突變體HURP S725E,表現在壓抑HURP細胞中相較於HURP S725A會使碎裂的高基氏體重新組裝成Ribbon結構,且對於促進高基氏體不穩定藥物Brefeldin A有較高的藥物抗性。HURP p725會被蛋白質去磷酸酶PP2Cβ去磷酸化,減少glu-α-tubulin並使高基氏體之穩定性降低。此結果證明了HURP p725對高基氏體結構之調節及穩定的重要性。以上結果顯示HURP p725對於高基氏體的組裝是有貢獻的。PRMT5(protein arginine methyltransferase 5)可以和HURP交互作用並甲基化HURP arginine 122位置,本研究也發現Aurora-A磷酸化HURP於serine 725是需要PRMT5甲基化HURP arginine 122,使用模擬PRMT5不甲基化HURP arginine 122的突變體R122K表現在細胞,會抑制Aurora-A磷酸化HURP S725的生成;HURP R122F表現在壓抑HURP細胞中相較於HURP R122K會使碎裂的高基氏體重新組裝並且對Brefeldin A有較高的藥物抗性。所有的結果顯示,HURP在M phase承接了PRMT5之訊號,造成HURP serine 725被Aurora-A磷酸化,經過修飾的HURP透過強化高基氏體附近的微管與引導TRIP11在胞內的分布控制高基氏體的結構完整並加強穩定性。
Golgi is responsible for modifying, packaging, and sorting proteins delivered from the rough endoplasmic reticulum. Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. Various factors involved in maintaining the architecture of Golgi have been explored including microtubule. Golgi interacts with a subset of microtubules, named stable microtubule (stable MT), which displays higher resistance to microtubule depolymerizing agents and undergoes posttranslational modifications such as detyrosination or acetylation. Although it has long been known that depolymerization of intracellular microtubule disassembles Golgi, yet it is not clear how microtubule contributes to Golgi assembly, and no evidence showing the essential role of the stable MT in Golgi formation. Besides, how the stable MT is regulated remains largely unknown.The study points out firstly that a kinetochore microtubule stabilizing protein, HURP, is localized to the stable MT when phosphorylated by Aurora-A at serine 725. The HURP p725 forms a tubulin-independent fiber and is localized to the stable MT. Knockdown of HURP makes stable MT shrink and disassembles Golgi. Further analyses reveal that HURP enhances the protein stability of glu-α-tubulin, one of the modifications of stable MT. Reduction of glu-α-tubulin by knocking down or inactivating the glu-α-tubulin producing enzyme, tubulin carboxypeptidase, by chemical inhibitor or RNAi, abolishes stable MT and disassembles Golgi. Overexpression of ectopic glu-α-tubulin, instead of α-tubulin, rescues the HURP shRNA-induced Golgi degeneration, collectively indicating that HURP facilitates the Golgi assembly through stabilizing stable MT. Moreover, to demonstrate the importance of HURP p725 on Golgi formation, three approaches are adopted. Firstly, HURP 725E, a mutant mimicking HURP phosphorylation at serine 725, has better Golgi rescue effect than HURP 725A, which abolishes HURP phosphorylation at serine 725, in cells harboring HURP shRNA. Secondly, PP2Cβ is found to bind HURP and reduce the level of HURP p725. Overexpression of PP2Cβ decreases the level of stable MT and disassembles Golgi. Thirdly, the Golgi disrupting agent brefeldin A (BFA) disperses HURP p725, reduces glu-α-tubulin, and disrupts Golgi. Interestingly, the HURP p725 is formed only when HURP is methylated by PRMT5 at arginine 122, and the HURP 122F mutant, which mimics HURP methylation at arginine 122, has higher potency to regenerate Golgi in HURP shRNA cells and stabilize Golgi in BFA treated cells than HURP 122K, which loses the methylation effect at arginine 122. At last, a Golgi regulator, TRIP11, is identified as a HURP interaction protein. HURP 725E has higher binding affinity to TRIP11 than WT and 725A. HURP is proposed to guide TRIP11 to Golgi and thereby help assembles Golgi. In conclusion, the study points out that the spindle binding protein HURP, able to stabilize kinetochore fiber in mitosis, is required for Golgi assembly due to the stable MT stabilizing activity of HURP, particularly when it is methylated by the known Golgi regulator PRMT5 and subsequently phosphorylated by the sensor for Golgi status, Aurora-A.
論文摘要 I
Abstract III
目錄 VI
圖表目錄 X
附圖表目錄 XII
第壹章、 緒論 1
第一節、HURP 1
壹、HURP之結構 1
貳、HURP在細胞內之分佈及其功能 2
參、HURP與癌症之關係 6
第二節、HURP的修飾 7
壹、Aurora-A對HURP的修飾及影響 7
貳、PRMT5對HURP的修飾及影響 9
第三節、高基氏體(Golgi) 10
壹、高基氏體(Golgi) 10
貳、TRIP 11 15
第四節、穩定性微管(stable microtubule) 17
第五節、研究動機及實驗設計 18
第貳章、實驗材料與方法 22
第一節、實驗材料 22
壹、勝任細胞 (Competent Cells) 22
貳、抗生素 (Antibiotics) 22
參、Luria-Bertain 細菌培養液(LB medium) 22
肆、細胞株 (Cell line) 22
伍、細胞轉染試劑 (Transfection reagent) 23
陸、抗體(Antibody) 23
第二節、實驗試劑 26
壹、Calcium-manganese based 緩衝溶液(CCMB buffer) 26
貳、Luria-Bertain 細菌培養液(LB medium) 26
參、Luria-Bertain 細菌培養基(LB agar plate) 26
肆、10倍Tris-borate-EDTA 緩衝溶液(10X TBE buffer) 27
伍、DNA瓊膠 27
陸、DMEM細胞培養液 27
柒、DMEM細胞凍存培養液 28
捌、10倍磷酸鹽緩衝溶液 29
玖、胰蛋白酶-乙二胺四乙酸四鈉消化液 29
壹拾、免疫螢光染色試劑-PLP 固定溶液 30
壹拾壹、免疫螢光染色試劑-細胞通透性/ 蛋白質阻斷溶液 30
壹拾貳、免疫螢光染色試劑-清洗溶液 31
壹拾參、細胞溶解緩衝溶液 31
壹拾肆、免疫沉澱法清洗溶液 32
壹拾伍、4倍SDS 電泳追蹤染劑 32
壹拾陸、聚丙烯酰胺膠體電泳分離膠體 33
壹拾柒、聚丙烯酰胺膠體電泳焦集膠體 33
壹拾捌、10倍蛋白質電泳緩衝溶液 34
壹拾玖、10倍全濕式電泳轉漬緩衝溶液 34
貳拾、10倍TBST緩衝溶液 35
貳拾壹、西方墨點法蛋白質阻斷溶液 35
第三節、實驗方法 35
壹、質體量化 35
貳、表現載體的製備 37
參、細胞培養 39
肆、質體的表現 39
伍、蛋白質分析 40
陸、細胞週期分析 42
第參章、實驗結果 44
第一節、HURP位於Golgi周圍並能調控Golgi結構 44
壹、HURP在細胞內之位置 44
貳、HURP具有調控Golgi結構之能力 45
第二節、Aurora-A磷酸化HURP使HURP在G1 phase更靠近Golgi 45
壹、Aurora-A磷酸化HURP s725後分布於Golgi 45
貳、HURP p725於細胞週期間的表現表現量變化 46
第三節、HURP p725位於Golgi周圍穩定的microtubule並可調控其表現 46
壹、HURP p725位於穩定的microtubule 46
貳、HURP 能維持Golgi周圍microtubule的穩定 47
參、HURP 能促進glu-α-tubulin的Bundling與表現 47
第四節、glu-α-tubulin能調控Golgi的結構 48
壹、抑制glu-α-tubulin的表現造成Golgi的Fragmentation 48
貳、EGFP-glu-α-tubulin表現質體的建構 49
參、EGFP-glu-α-tubulin能rescue shHURP所引發的Golgi Fragmentation 49
第五節、表現HURP S725E能促進Golgi的組裝 50
壹、BFA能使HURP p725離開Golgi並能使Golgi碎裂 50
貳、表現HURP S725E能抵抗BFA造成的Golgi不穩定及rescue shHURP造成的Golgi Fragmentation 50
第六節、PRMT5甲基化促使HURP磷酸化並可調控Golgi 51
壹、PRMT5甲基化HURP R122為Aurora-A磷酸化HURP S725所需 51
貳、表現HURP R122F能抵抗BFA造成的Golgi不穩定及rescue shHURP造成的Golgi Fragmentation。 52
第七節、PP2Cs去磷酸化HURP p725並調節Golgi結構 52
壹、PP2Cs在細胞中的位置 52
貳、PP2Cs與HURP有蛋白質-蛋白質交互作用並可去磷酸化HURP p725 53
參、PP2Cs可以調節Golgi 54
第八節、HURP引導TRIP11位置來調控Golgi結構 54
壹、TRIP 11在細胞中的位置 54
貳、TRIP 11在與HURP S725E蛋白質-蛋白質交互作用較強 55
參、HURP能調控TRIP11的分布 55
第肆章、 討論 57
第伍章、 結論 61
參考文獻 62
圖表 70
Alcalde J, Bonay P, Roa A, Vilaro S, Sandoval IV. (1992). Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. J Cell Biol. 116(1):69-83.
Andres-Delgado L, Anton OM, Alonso MA. (2013). Centrosome polarization in T cells: a task for formins. Front Immunol. 4:191.
Andres-Delgado L, Anton OM, Bartolini F, Ruiz-Saenz A, Correas I, Gundersen GG, Alonso MA. (2012). INF2 promotes the formation of detyrosinated microtubulesnecessary for centrosome reorientation in T cells. J Cell Biol. 198(6):1025-37.
Barr FA, Short B. (2003). Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol. 15(4):405-13.
Bassal S, Nomura N, Venter D, Brand K, McKay MJ, van der Spek PJ. (2001). Characterization of a novel human cell-cycle-regulated homologue of Drosophila dlg1. Genomics. 77(1-2):5-7.
Beck R, Rawet M, Wieland FT, Cassel D. (2009). The COPI system: Molecular mechanisms and function. FEBS Lett. 583(17):2701-9.
Bedford MT. (2007). Arginine methylation at a glance. J Cell Sci. 120(Pt 24):4243-6.
Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S. and Clarke, S. (2001). Prmt5 (janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol.Chem. 276, 32971-32976.
Casanova CM, Rybina S, Yokoyama H. (2008). Hepatoma up-regulated protein is required for chromatin-induced microtubule assembly independently of TPX2. Mol Biol Cell 19: 4900-4908.
Chari A, Golas MM, Klingenhager M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U. (2008). An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell. 135(3):497-509.
Chiu AW, Huang YL, Huan SK, Wang YC, Ju JP, Chen MF, Chou CK. (2002). Potential molecular marker for detecting transitional cell carcinoma. Urology. 60(1):181-185.
Coutinho MF, Prata MJ, Alves S. (2012). Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 105(4):542-50.
Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV. (2004). Aurora A, meiosis and mitosis. Biol Cell. 96(3):215-29.
Dacwag CS, Bedford MT, Sif S, Imbalzano AN. (2009). Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol. 29(7):1909-21.
Davis TN, Wordeman L. (2007). Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. Trends in cell biology. 17(8):377-82.
Dutertre S, Descamps S, Prigent C. (2002). On the role of aurora-A in centrosome function. Oncogene. 21(40):6175-83.
Dutertre S, Descamps S, Prigent C. (2002). On the role of aurora-A in centrosome function. Oncogene. 21(40):6175-83.
Gilbreth M, Yang P, Bartholomeusz G, Pimental RA, Kansra S, Gadiraju R, Marcus S. (1998). Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs. Proc Natl Acad Sci U S A. 95(25):14781-6.
Giustiniani J, Couloubaly S, Baillet A, Pourci ML, Cantaloube I, Fourniat C, Paul JL, Pous C. (2009). Basal endothelial nitric oxide synthase (eNOS) phosphorylation on Ser(1177) occurs in a stable microtubule- and tubulin acetylation-dependent manner. Exp Cell Res. 315(20):3509-20.
Gudmundsson KO, Thorsteinsson L, Sigurjonsson OE, Keller JR, Olafsson K, Egeland T, Gudmundsson S, Rafnar T. (2007). Gene expression analysis of hematopoietic progenitor cells identifies Dlg7 as a potential stem cell gene. Stem Cells. 25(6):1498-1506.
Haedicke J, de Los Santos K, Goff SP, Naghavi MH. (2008). The Ezrin-radixin-moesin family member ezrin regulates stable microtubule formation and retroviral infection. J Virol. 82(9):4665-70.
Hsu VW, Lee SY, Yang JS. (2009). The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol. 10(5):360-4.
Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. (1999). GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 145(1):83-98.
Kim JM, Sohn HY, Yoon SY, Oh JH, Yang JO, Kim JH, Song KS, Rho SM, Yoo HS, Kim YS, Kim JG, Kim NS. (2005). Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res. 11(2 Pt 1):473-82.
Kreis TE. (1987). Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6(9):2597-606.
Lowe M. (2011). Structural organization of the Golgi apparatus. Curr Opin Cell Biol. 23(1):85-93.
Maag RS, Hicks SW, Machamer CE. (2003). Death from within: apoptosis and the secretory pathway. Curr Opin Cell Biol. 15(4):456-61.
Millarte V, Farhan H. (2012). The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. ScientificWorldJournal. 2012:498278.
Mizuno M, Singer SJ. (1994). A possible role for stable microtubules in intracellular transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Sci. 107 ( Pt 5):1321-31.
Naghavi MH, Gundersen GG, Walsh D. (2013). Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci U S A. 110(45):18268-73.
Naghavi MH, Valente S, Hatziioannou T, de Los Santos K, Wen Y, Mott C, Gundersen GG, Goff SP. (2007). Moesin regulates stable microtubule formation and limits retroviral infection in cultured cells. EMBO J. 26(1):41-52. Epub 2006 Dec 14.
Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S. (2007). Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 26(15):3558-69.
Pernet-Gallay K, Antony C, Johannes L, Bornens M, Goud B, Rios RM. (2002). The Overexpression of GMAP-210 Blocks Anterograde and Retrograde Transport Between the ER and the Golgi Apparatus. Traffic. 3(11):822-32.
Piperno G, LeDizet M, Chang XJ. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol. 104(2):289-302.
Ramirez IB, Lowe M. (2009). Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol. 20(7):770-9.
Rios RM, Bornens M. (2003). The Golgi apparatus at the cell centre. Curr Opin Cell Biol. 15(1):60-6.
Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M. (2004). GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell. 118(3):323-35.
Sabo Y, Walsh D, Barry DS, Tinaztepe S, de Los Santos K, Goff SP, Gundersen GG, Naghavi MH. (2013). HIV-1 Induces the Formation of Stable Microtubules to Enhance Early Infection. Cell Host Microbe. 14(5):535-46.
Sanderson HS, Clarke PR. (2006). Cell biology: Ran, mitosis and the cancer connection. Current Biology. 16(12):466-8.
Schekman R., Orci L. (1996). Coat proteins and vesicle budding. Science 271 (5255):1526–1533.
Sillje HH, Nagel S, Korner R, Nigg EA. (2006). HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16: 731-742.
Skoufias DA, Burgess TL, Wilson L. (1990). Spatial and temporal colocalization of the Golgi apparatus andmicrotubules rich in detyrosinated tubulin. J Cell Biol. 111(5 Pt 1):1929-37.
Sutterlin C, Colanzi A. (2010). The Golgi and the centrosome: building a functional partnership. J Cell Biol. 188(5):621-8.
Sutterlin C, Hsu P, Mallabiabarrena A, Malhotra V. (2002). Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell. 109(3):359-69.
Sutterlin C, Hsu P, Mallabiabarrena A, Malhotra V. (2002). Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell. 109(3):359-69.
Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P. (2007). RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci. 120(Pt 21):3748-61.
Thyberg J, Moskalewski S. (1985). Microtubules and the organization of the Golgi complex. Exp Cell Res. 159(1):1-16.
Thyberg J, Moskalewski S. (1993). Relationship between the golgi complex and microtubules enriched in detyrosinated or acetylated tubulin studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis. Cell Tissue Res. 273(3):457-66.
Tsou AP, Yang CW, Huang CY, Yu RC, Lee YC, Chang CW, Chen BR, Chung YF, Fann MJ, Chi CW, Chiu JH, Chou CK. (2003). Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene. 22(2):298-307.
Walczak CE, Heald R. (2008). Mechanisms of mitotic spindle assembly and function. International Review of Cytology. 265:111-58.
Waters MG, Pfeffer SR. (1999). Membrane tethering in intracellular transport. Curr Opin Cell Biol, 11(4):453-9.
Webster DR, Patrick DL. (2000). Beating rate of isolated neonatal cardiomyocytes is regulated by thestable microtubule subset. Am J Physiol Heart Circ Physiol. 278(5):H1653-61.
Wei TY, Juan CC, Hisa JY, Su LJ, Lee YC, Chou HY, Chen JM, Wu YC, Chiu SC, Hsu CP, Liu KL, Yu CT. (2012). Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci. 103(9):1640-50.
Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS. (2013). Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-κB inhibition. Breast Cancer Res. 15(5):R83.
Wiese C, Zheng Y. (2000). A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2(6):358-64.
Wong J and Fang G. (2006). HURP controls spindle dynamics to promote proper interkin- etochore tension and efficient kinetochore capture. Journal of Cell biology. 173(6):879-891.
Wong J, Lerrigo R, Jang CY, Fang G. (2008). Aurora-A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain. Molecular Biology of the Cell. 19(5):2083-91.
Yu CT, Hsu JM, Lee YC, Tsou AP, Chou CK, Huang CY. (2005). Phosphorylation and Stabilization of HURP by Aurora-A: Implication of HURP as a Transforming Target of Aurora-A. Molecular and Cellular Biology. 25(14):5789-800.
Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S. (2010). PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res. 20(9):1023-33.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊