(3.232.129.123) 您好!臺灣時間:2021/03/04 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張政鈺
研究生(外文):Cheng-Yu Chang
論文名稱:缺血預處理對肌肉功能與組織氧合作用之影響
論文名稱(外文):Effects of Ischemic Preconditioning on Muscular Function and Tissue Oxygenation
指導教授:詹貴惠詹貴惠引用關係
指導教授(外文):Kuei-Hui Chan
學位類別:碩士
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:等速肌力近紅外線光譜儀氧氣飽和度百分比總血紅素濃度
外文關鍵詞:isokinetic muscular strengthnear-infrared spectroscopypercentage of oxygen saturationtotal hemoglobin concentration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
缺血預處理 (ischemic preconditioning, IPC) 指在長時間缺血前,先進行短暫性的缺血再灌流,此方法可對嚴重缺血而導致的傷害產生保護作用,亦可能影響全身或局部性的血流和氧氣運輸,可能因此對肌肉功能有改善效果,而提升運動表現。目的:探討下肢IPC對健康成人之肌力及肌耐力等肌肉功能和肌肉組織氧合作用之影響。方法:以15名健康成人 (年齡:26.3±3.5歲、身高:175.1±7.8公分、體重:74.1±7.4公斤) 為對象,採隨機、交叉及平衡次序設計,分別接受真實IPC (IPC) 或假IPC (sham) 處理。IPC以壓脈帶將大腿以左右腳輪流方式進行3次、每次5分鐘的加壓 (壓力為高於參與者的收縮壓50 mmHg) 和5分鐘洩壓,sham則只加壓至10 mmHg;兩次的處理間隔時間至少一週。每次處理後皆依序進行等速肌力及肌耐力測驗,以量測和計算相對最大力矩、平均功率、總作功量和肌耐力指標;同時亦使用近紅外線光譜儀偵測處理前、處理後立即和肌耐力測驗前、測驗中及測驗後立即至5分鐘之肌肉組織氧合作用,以測量氧氣飽和度百分比、總血紅素濃度、含氧血紅素濃度及去氧血紅素濃度,並計算變化量。所得資料以相依樣本t檢定比較兩次實驗處理間相同時間點時各項數值之差異。結果:IPC與sham兩者之相對最大力矩、平均功率、總作功量和肌耐力指標皆無顯著差異,而IPC介入後顯著增加總血紅素之濃度,但對氧氣飽和度及含氧、去氧血紅素濃度並無影響。IPC在運動中10秒與20秒之含氧血紅素變化量顯著低於sham,而在運動中30秒去氧血紅素變化量顯著高於sham。在運動中的10秒、20秒和30秒,IPC氧氣飽和度變化量顯著低於sham,但兩者之總血紅素變化量無顯著差異。結論:IPC介入後可增加肌肉組織的血流量,並改善肌耐力測試中的耗氧能力,但無法改善短時間的肌肉功能。
Repeated episodes of brief ischemia and reperfusion have been known as ischemic preconditioning (IPC) that can provide a protection against prolonged ischemic injury. Recent studies have indicated that IPC may effect both local and systemic blood flow and oxygen delivery. Thus, IPC may improve muscle function and enhance performance. Purpose: To determine the effects of IPC on lower-limbs on muscle function and tissue oxygenation in healthy adults. Methods: Fifteen participants (age: 26.3±3.5 yr, height: 175.1±7.8 cm, weight: 74.1±7.4 kg) were recruited in a randomized, crossover and counter-balanced study. All participants completed two trails of IPC and sham. The IPC treatment use tourniquets on lower limbs (inflated to 50 mmHg above the participant’s systolic blood pressure) to occlude blood flow (3 times of 5-min occlusion and 5-min reperfusion) and the sham treatment was low-pressure (10 mmHg) for control. These trials were separated by more than one week. After the treatment, the isokinetic muscular strength and endurance had been tested to measure relative peak torque, average power, total work and muscular endurance index. The near-infrared spectroscopy (NIRS) was used to detect muscle tissue percentage of oxygen saturation, total hemoglobin concentration, oxygen hemoglobin concentration and deoxygen hemoglobin concentration at before, immediately after treatment and whole period of muscular endurance test. All data were analyzed by paired-t test to compare the differences between IPC or sham. Result: There were no differences in relative peak torque, average power, total work and muscle endurance index between IPC and sham. However, total hemoglobin increased after IPC, but oxygen hemoglobin, deoxygen hemoglobin and oxygen saturation had no changes. During exercise, the change of oxygen hemoglobin in IPC were lower than in sham at 10 and 20 sec of exercise. The change of oxygen saturation in IPC were also lower than in sham at 10, 20 and 30 sec of exercise. Moreover, the change of deoxygen hemoglobin in IPC was significantly higher than in sham at 30 sec of exercise. But there were no difference in total hemoglobin change during muscular endurance test. Conclusion: IPC can increase the blood flow in muscle tissue and further improved the oxygen consumption capacity during endurance exercise test. However, this beneficial effect was not reflected in improvement of muscle function.
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 名詞操作性定義 4
第四節 研究限制 6
第貳章 文獻探討 7
第一節 IPC之特性 7
第二節 IPC對骨骼肌與運動表現之影響 10
第三節 文獻小結 17
第參章 研究方法 18
第一節 研究對象 18
第二節 實驗設計與方法 19
第三節 資料處理 24
第肆章 結果 25
第一節 肌肉功能 25
第二節 肌肉組織氧合作用 27
第伍章 討論 35
第一節 IPC對肌肉功能 35
第二節 IPC對肌肉組織氧合作用 37
第陸章 結論與建議 39
參考文獻 40
中文部分 40
外文部分 40

中文部分
陸康豪、林嘉志 (2012)。缺血預適應與運動表現之相關研究。中華體育季刊,26(2),175-182。doi: 10.6223/qcpe.2602.201206.1201

外文部分
Ahmadi, S., Sinclair, P. J., &; Davis, G. M. (2008). Muscle oxygenation after downhill walkinginduced muscle damage. Clinical Physiology and Functional Imaging, 28(1), 55-63.
Ambros, J. T., Herrero-Fresneda, I., Borau, O. G., &; Boira, J. M. (2007). Ischemic preconditioning in solid organ transplantation: From experimental to clinics. Transplant International, 20(3), 219-229. doi: 10.1111/j.1432-2277.2006.00418.x
Andreas, M., Schmid, A. I., Keilani, M., Doberer, D., Bartko, J., Crevenna, R., ... Wolzt, M. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: A randomized crossover trial. Journal of Cardiovascular Magnetic Resonance, 13, 32. doi: 10.1186/1532-429X-13-32
Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., &; Thijssen, D. H. (2012a). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American Journal of Physiology. Heart and Circulatory Physiology, 303(5), H533-538. doi: 10.1152/ajpheart.00272.2012
Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., &; Thijssen, D. H. (2012b). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine &; Science in Sports &; Exercise, 44(11), 2084-2089. doi: 10.1249/MSS.0b013e318262cb17
Balakumar, P., Rohilla, A., &; Singh, M. (2008). Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: What could be the next footstep? Pharmacological Research, 57(6), 403-412. doi: 10.1016/j.phrs.2008.05.006
Barr, M. W. (2011). The effect of ischemic preconditioning on repeated supramaximal sprints. (Master's thesis, Ohio University). Retrieved from https://etd.ohiolink.edu/rws_etd/document/get/ohiou1307030957/inline
Bushell, A. J., Klenerman, L., Taylor, S., Davies, H., Grierson, I., Helliwell, T. R., &; Jackson, M. J. (2002). Ischaemic preconditioning of skeletal muscle. 1. Protection against the structural changes induced by ischaemia/reperfusion injury. Journal of Bone and Joint Surgery. British Volume, 84(8), 1184-1188.
Clevidence, M. W., Mowery, R. E., &; Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112(10), 3649-3654. doi: 10.1007/s00421-012-2345-5
Costes, F., Prieur, F., Feasson, L., Geyssant, A., Barthelemy, J. C., &; Denis, C. (2001). Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Medicine &; Science in Sports &; Exercise, 33(9), 1484-1489.
Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., &; Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530-536. doi: 10.1152/japplphysiol.00266.2011
Cramer, J. T., Stout, J. R., Culbertson, J. Y., &; Egan, A. D. (2007). Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function. Journal of Strength and Conditioning Research, 21(3), 668-677. doi: 10.1519/R-20005.1
de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., &; Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. doi: 10.1007/s00421-009-1195-2
Denis, R., Wilkinson, J., &; De Vito, G. (2011). Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises. Clinical Physiology and Functional Imaging, 31(5), 352-357. doi: 10.1111/j.1475-097X.2011.01023.x
Foster, G. P., Westerdahl, D. E., Foster, L. A., Hsu, J. V., &; Anholm, J. D. (2011). Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure. Respiratory Physiology and Neurobiology, 179(2-3), 248-253. doi: 10.1016/j.resp.2011.09.001
Gaesser, G. A., &; Brooks, G. A. (1984). Metabolic bases of excess post-exercise oxygen consumption: A review. Medicine &; Science in Sports &; Exercise, 16(1), 29-43.
González-Alonso, J., Mortensen, S. P., Dawson, E. A., Secher, N. H., &; Damsgaard, R. (2006). Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of erythrocyte count and oxygenation state of haemoglobin. Journal of Physiology, 572(1), 295-305.
Gurke, L., Mattei, A., Chaloupka, K., Marx, A., Sutter, P. M., Stierli, P., ... Heberer, M. (2000). Mechanisms of ischemic preconditioning in skeletal muscle. Journal of Surgical Research, 94(1), 18-27. doi: 10.1006/jsre.2000.5987
Hamaoka, T., McCully, K. K., Niwayama, M., &; Chance, B. (2011). The use of muscle near-infrared spectroscopy in sport, health and medical sciences: Recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1955), 4591-4604. doi: 10.1098/rsta.2011.0298
Hittinger, E. A. (2012). Ischemic preconditioning of the legs results in small improvements in peak exercise capacity at sea level, but not simulated high altitude in trained male cyclists. (Doctor dissertation, University of Miami). Retrieved from http://scholarlyrepository.miami.edu/cgi/viewcontent.cgi?article=1802&;context=oa_dissertations
Hoffman, J. (2006). Norms for fitness, preformance, and health (pp. 41). Champaign, IL: Human Kinetics.
Hong, D. M., Jeon, Y., Lee, C. S., Kim, H. J., Lee, J. M., Bahk, J. H., ... Hwang, H. Y. (2012). Effects of remote ischemic preconditioning with postconditioning in patients undergoing off-pump coronary artery bypass surgery--randomized controlled trial. Circulation Journal: Official Journal of The Japanese Circulation Society, 76(4), 884-890.
Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., ... Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine &; Science in Sports &; Exercise, 43(7), 1280-1286. doi: 10.1249/MSS.0b013e318206845d
Knuttgen, H. G., and Kraemer, W. J., (1987). Terminology and measurement in exercise performance. Journal of Applied Sports Science Research, 1, 1-10.
Lim, S. Y., &; Hausenloy, D. J. (2012). Remote ischemic conditioning: From bench to bedside. Frontiers in Physiology, 3, 27. doi: 10.3389/fphys.2012.00027
Mansour, Z., Bouitbir, J., Charles, A. L., Talha, S., Kindo, M., Pottecher, J., ... Geny, B. (2012). Remote and local ischemic preconditioning equivalently protects rat skeletal muscle mitochondrial function during experimental aortic cross-clamping. Journal of Vascular Surgery, 55(2), 497-505. doi: 10.1016/j.jvs.2011.07.084
Muller, B. A., &; Dhalla, N. S. (2010). Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Current Cardiology Reviews, 6(4), 255-264. doi: 10.2174/157340310793566118
Murry, C. E., Jennings, R. B., &; Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.
Pang, C. Y., &; Forrest, C. R. (1995). Acute pharmacologic preconditioning as a new concept and alternative approach for prevention of skeletal muscle ischemic necrosis. Biochemical Pharmacology, 49(8), 1023-1034.
Poulsen, M. B., Jakobsen, J., Aagaard, N. K., &; Andersen, H. (2007). Motor performance during and following acute alcohol intoxication in healthy non-alcoholic subjects. European Journal of Applied Physiology, 101(4), 513-523. doi: 10.1007/s00421-007-0511-y
Powers, S. K., Murlasits, Z., Wu, M., &; Kavazis, A. N. (2007). Ischemia-reperfusion-induced cardiac injury: A brief review. Medicine &; Science in Sports &; Exercise, 39(9), 1529-1536. doi: 10.1249/mss.0b013e3180d099c1
Riksen, N. P., Smits, P., &; Rongen, G. A. (2004). Ischaemic preconditioning: From molecular characterisation to clinical application--part I. Netherlands Journal of Medicine, 62(10), 353-363.
Rongen, G. A., Oyen, W. J., Ramakers, B. P., Riksen, N. P., Boerman, O. C., Steinmetz, N., &; Smits, P. (2005). Annexin A5 scintigraphy of forearm as a novel in vivo model of skeletal muscle preconditioning in humans. Circulation, 111(2), 173-178. doi: 10.1161/01.CIR.0000151612.02223.F2
Saito, T., Komiyama, T., Aramoto, H., Miyata, T., &; Shigematsu, H. (2004). Ischemic preconditioning improves oxygenation of exercising muscle in vivo. Journal of Surgical Research, 120(1), 111-118. doi: 10.1016/j.jss.2003.12.021
Smith, J. C., &; Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196-199.
Tune, J. D., Richmond, K. N., Gorman, M. W., &; Feigl, E. O. (2002). Control of coronary blood flow during exercise. Experimental Biology and Medicine, 227(4), 238-250.
Ufland, P., Lapole, T., Ahmaidi, S., &; Buchheit, M. (2012). Muscle force recovery in relation to muscle oxygenation. Clinical Physiology and Functional Imaging, 32(5), 380-387. doi: 10.1111/j.1475-097X.2012.01141.x
Veighey, K., &; Macallister, R. J. (2012). Clinical applications of remote ischemic preconditioning. Cardiology Research and Practice, 2012, 620681. doi: 10.1155/2012/620681

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔