(54.236.62.49) 您好!臺灣時間:2021/03/08 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐藝洳
研究生(外文):Yi-Ju Hsu
論文名稱:腸道微生物對小鼠運動表現之影響
論文名稱(外文):Effects of Intestinal Microbiota on Exercise Performance in Mice
指導教授:黃啟彰黃啟彰引用關係莊曉莉莊曉莉引用關係
指導教授(外文):Chi-Chang HuangHsiao-Li Chuang
學位類別:碩士
校院名稱:國立體育大學
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:49
中文關鍵詞:腸道無生物無菌鼠單一菌鼠運動表現抗氧化酵素
外文關鍵詞:intestinal microbiotagerm-free micegnotobiotic miceexercise performanceantioxidant enzyme
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
目的:腸道微生物在宿主代謝和生理機能被認為是一個重要的環境因素。近來研究指出,腸道微生物參與氧化壓力的生產。另一方面,抗氧化酵素在運動員的運動能力與抗疲勞上也扮演重要的關鍵。因此,本研究目的是探討腸道微生物與運動表現之間的關係。
方法:我們使用無菌小鼠(germ free,GF)、無特定病原(specific pathogen free,SPF)小鼠和單菌(gnotobiotic,Bacteroides fragilis,BF)小鼠分別給予單次力竭游泳運動試驗。檢測運動能力的指標,包括游泳時間、病理學評估、血清生化和血清及肝臟中抗氧化酵素的含量。
結果:SPF與BF小鼠的肝臟、肌肉、棕色脂肪和副睪兩側脂肪之重量均顯著高於GF小鼠。在力竭游泳時間SPF和BF小鼠顯著比GF小鼠游泳時間較長。相反的,血清中的尿酸在SPF和BF小鼠顯著較低。抗氧化的部分,SPF小鼠血清中穀胱甘肽過氧化物酶(GPx)與過氧化氫酶的活性(CAT)顯著比GF和BF小鼠高。然而,BF小鼠血清中超氧歧化酶活性(SOD)最低。在肝臟中,SPF小鼠的穀胱甘肽過氧化物酶有顯著提升的現象比GF和BF小鼠。
結論:腸道微生物可能透過調節穀胱甘肽過氧化物酶與過氧化氫酶活性來降低身體疲勞,提高運動表現。

Purpose: The intestinal microbiota is considered to be an important environmental factor associated with host metabolism and physiology. Several studies have indicated that the gut microbiota is involved in oxidative stress production. On the other hand, antioxidant enzymes are a key to exercise capacity and anti-fatigue in athletes. The aim of this study was to investigate the correlation between intestinal bacteria and exercise performance.
Methods: We examined exercise performance indexes including gross found, the swim to exhaustion exercise test, blood chemistry, and antioxidant enzymes in specific pathogen free (SPF), germ-free (GF), and Bacteroides fragilis (BF) gnotobiotic mice. Results: The weights of liver, muscle, brown adipose, and epididymal fat pads were significantly higher in the SPF and BF mice than GF mice. The exhaustive swimming time of the SPF and BF mice was significantly longer as compared to that of GF mice. In contrast, serum uric acid was lower in SPF and BF mice. In the serum, the activity of glutathione peroxidase (GPx) and catalase (CAT) in SPF mice was significantly higher than in GF mice. However, serum superoxide dismutase (SOD) was lower in the BF mice. In the liver, the significantly elevated of GPx levels was found in the SPF mice than in GF and BF mice.
Conclusions: Different microbial statuses might regulate antioxidant enzyme defense system such as GPx and CAT activity to reduce physical fatigue and improved exercise performance.

Chinese abstract ................................ I
English abstract ................................ II
Contents ........................................ IV
List of tables .................................. VI
List of figures ................................. VII
Introduction
Background, rationales and significance ......... 1
Introduction of intestinal microflora ........... 2
Introduction of SPF, GF and GN animals .......... 5
Introduction of oxidant stress and antioxidant enzyme in exercise ........................................ 8
Specific aims ................................... 11
Materials and Methods
Experimental animals ............................ 12
Experimental design ............................. 12
Exhaustive swimming test ........................ 14
Histopathologic evaluation ...................... 14
Determination of blood biochemical variables .... 14
Glycogen analysis ............................... 15
Lactate analysis ................................ 15
Glutathione peroxidase analysis ................. 15
Catalase analysis ............................... 16
Superoxide dismutase analysis ................... 16
Statistical analysis ............................ 16
Results
Swimming time to exhaustion ..................... 17
Body weight, tissues weights, and proportional weights of tissues ......................................... 17
Biochemical analyses ............................ 17 Antioxidant enzymes activities .................. 18
Morphology of liver, kidney, muscle, and heart tissues ......................................... 19
Discussion ...................................... 20
References ...................................... 25
Tables .......................................... 32
Figures ......................................... 34
Appendix ........................................ 40

1.Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338(6103):120-123.
2.Antunes F, Han D, &; Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med. 2002; 33(9):1260-1267.
3.Barreto TO, Cleto LS, Gioda CR, Silva RS, Campi-Azevedo AC, de Sousa-Franco J, et al. Swim training does not protect mice from skeletal muscle oxidative damage following a maximum exercise test. Eur J Appl Physiol. 2012; 112(7):2523-2530.
4.Bishop NC, Blannin AK, Walsh NP, Robson PJ, &; Gleeson M. Nutritional aspects of immunosuppression in athletes. Sports Med. 1999; 28(3):151-176.
5.Bogdanis GC, Stavrinou P, Fatouros IG, Philippou A, Chatzinikolaou A, Draganidis D, et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food ChemToxicol. 2013.
6.Burcelin R, Serino M, Chabo C, Blasco-Baque V, &; Amar J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol. 2011; 48(4):257-273.
7.Cao Y, Hu Y, Liu P, Zhao HX, Zhou XJ, Wei YM. Effects of a Chinese traditional formula Kai Xin San (KXS) on chronic fatigue syndrome mice induced by forced wheel running. Journal of ethnopharmacology. 2012; 139(1):19-25.
8.Chen LH, Snyder DL. Effects of age, dietary restriction and germ-free environment on glutathione-related enzymes in Lobund-Wistar rats. Arch Gerontol Geriatr. 1992; 14(1):17-26.
9.Chuang HL, Huang YT, Chiu CC, Liao CD, Hsu FL, Huang CC, &; Hou CC. Metabolomics characterization of energy metabolism reveals glycogen accumulation in gut-microbiota-lacking mice. J Nutr Bioche. 2012; 23(7):752-758.
10.Deaton CM, Marlin DJ. Exercise-Associated Oxidative Stress. Clin Tech Equine Prac. 2003; 2: 278-291.
11.Dobashi Y, Yoshimura H, Atarashi E, Takahashi K, Tohei A, Amao H. Upregulation of superoxide dismutase activity in the intestinal tract mucosa of germ-free mice. J Vet Med Sci. 2013; 75(1):49-54.
12.Dobashi Y, Miyakawa Y, Yamamoto I, Amao H. Effects of intestinal microflora on superoxide dismutase activity in the mouse cecum. Exp Anim. 2011; 60(2):133-9.
13.Eckburg PB, Bik EM., Bernstein C N., Purdom E., Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005; 308(5728):1635-1638.
14.Edwards NL. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve Clin J Med. 2008; 75(5):S13-6.
15.Fatouros IG, Jamurtas AZ, Villiotou V, Pouliopoulou S, Fotinakis P, Taxildaris K, et al. Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc. 2004; 36(12):2065-72.
16.Gomez-Cabrera MC, Domenech E, &; Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008; 44(2):126-131.
17.Hooper LV, &; Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001; 292(5519):1115-1118.
18.Kurra V, Eraranta A, Jolma P, Vehmas TI, Riutta A, Moilanen E, et al. Hyperuricemia, oxidative stress, and carotid artery tone in experimental renal insufficiency. Am J Hypertens. 2009; 22(9): 964-970.
19.Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, et al. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. Soc Sports Nutr. 2012; 9(1):45.
20.Levenson SM, Mason RP, Huber TE, Malm OJ, Horowitz RE, &; Einhebe A. Germfree animals in surgical research. Ann Surg. 1959;150:713-730.
21.Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122): 1022-3.
22.Macpherson AJ, &; Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004; 4(6):478-485.
23.Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008; 453(7195): 620-625.
24.Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, et al. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. CurrMicrobiol. 2011; 62(6): 1689-1696.
25.Mai V, &; Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol. 2009; 15(1):81-85.
26.Madsen, T. E., Muhlestein, J. B., Carlquist, J. F., Horne, B. D., Bair, T. L., Jackson, J. D., Lappe, J. M., Pearson, R. R.,Anderson, J. L. (2005). Serum uric acid independently predicts mortality in patients with significant, angiographically defined coronary disease. Am J Nephrol, 25, 45-49.
27.Naziroglu M, Kilinc F, Uguz AC, Celik O, Bal R, Butterworth PJ, et al. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. Cell Biochem Funct. 2010; 28(4): 300-5.
28.Nuttall GHF, Thierfelder H .Thierisches Leben ohne Bacterien im Verdauungskanal II. Ztschr. Physiol. 1895a; 22:62-73.
29.Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001; 84(1-2): 1-6.
30.Musso G, Gambino R, &; Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010; 33(10):2277-2284.
31.Orhan H, van Holland B, Krab B, Moeken, J, Vermeulen, NP, Hollander P, &; Meerman JH. Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res. 2004; 38(12):1269-1279.
32.Powers SK, Sollanek KJ, Wiggs MP, Demirel HA, Smuder AJ. Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection. Free Radic Res. 2013.
33.Round JL, &; Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5):313-323.
34.Sanchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, et al. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008; 295(4): F1134-41.
35.Schaedler RW, Dubos R, Costello R. Association of germfree mice with bacteria isolated from normal mice. J Exp Med. 1965; 122: 77-83.
36.Sekirov I, Russel SL, Antunes L, &; Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3):859-904.
37.Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J ClinNutr. 2000; 72(2 Suppl):653S-69S.
38.Sjogren YM, Jenmalm MC, Bottcher MF, Bjorksten B, &; Sverremark-Ekstrom E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009; 39(4):518-526.
39.Skenderi KP, Tsironi M, Lazaropoulou C, Anastasiou CA, Matalas AL, Kanavaki I, et al. Changes in free radical generation and antioxidant capacity during ultramarathon foot race. Eur J Clin Invest. 2008; 38(3): 159-165.
40.Smarsh DN, Liburt N, Streltsova J, McKeever K, Williams CA. Oxidative stress and antioxidant status in intensely exercising horses administered nutraceutical extracts. Equine veterinary journal Supplement. 2010; 42(38): 317-322.
41.Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007; 19(2): 59-69.
42.Stock J. Gut microbiota: an environmental risk factor for cardiovascular disease. Atherosclerosis. 2013; 229(2):440-442.
43.Sung CC, Hsu YC, Chen CC, Lin YF, &; Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev; 2013:301982.
44.Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID., Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1:4523-4530.
45.Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neurosci Lett. 2003; 352(3): 159-162.
46.Tiihonen K, Ouwehand AC, &; Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Res Rev. 2010; 9(2):107-116.
47.Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457(7228): 480-4.
48.Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010; 15: 25-34.
49.Urso, M. L., &; Clarkson, P. M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 189(1-2):41-54.
50.Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010; 51(5):1101-1112.
51.West NP, Pyne DB, Cripps AW, Hopkins WG, Eskesen DC, Jairath A, et al. Lactobacillus fermentum (PCC(R)) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J. 2011; 10: 30.
52.Wolf G. Gut microbiota: a factor in energy regulation. Nutr Rev. 2006; 64(1):47-50.
53.Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 2013; 18(4): 4689-4702.
54.Xu C, Lv J, You S, Zhao Q, Chen X, Hu X. Supplementation with oat protein ameliorates exercise-induced fatigue in mice. Food Funct. 2013; 4(2): 303-309.
55.Xiao JH, Xiao DM, Chen DX, Xiao Y, Liang ZQ, Zhong JJ. Polysaccharides from the Medicinal Mushroom Cordyceps taii Show Antioxidant and Immunoenhancing Activities in a D-Galactose-Induced Aging Mouse Model. Evid Based Complement Alternat Med. 2012; 2012:273435.
56.Yan F, Wang B, Zhang Y. Polysaccharides from Cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress. Pharm Biol. 2013.
57.Yi P, &; Li L. The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol. 2012; 157(1-2):1-7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔