|
[1] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282 (1998) 1145-1147. [2] J.B. Gurdon, Adult frogs derived from the nuclei of single somatic cells, Dev Biol 4 (1962) 256-273. [3] I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, K.H. Campbell, Viable offspring derived from fetal and adult mammalian cells, Nature 385 (1997) 810-813. [4] C.A. Cowan, J. Atienza, D.A. Melton, K. Eggan, Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells, Science 309 (2005) 1369-1373. [5] D. Magnus, M.K. Cho, Ethics. Issues in oocyte donation for stem cell research, Science 308 (2005) 1747-1748. [6] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (2006) 663-676. [7] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131 (2007) 861-872. [8] J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells, Science 318 (2007) 1917-1920. [9] K. Saha, R. Jaenisch, Technical challenges in using human induced pluripotent stem cells to model disease, Cell Stem Cell 5 (2009) 584-595. [10] I.H. Park, N. Arora, H. Huo, N. Maherali, T. Ahfeldt, A. Shimamura, M.W. Lensch, C. Cowan, K. Hochedlinger, G.Q. Daley, Disease-specific induced pluripotent stem cells, Cell 134 (2008) 877-886. [11] X. Carvajal-Vergara, A. Sevilla, S.L. D'Souza, Y.S. Ang, C. Schaniel, D.F. Lee, L. Yang, A.D. Kaplan, E.D. Adler, R. Rozov, Y. Ge, N. Cohen, L.J. Edelmann, B. Chang, A. Waghray, J. Su, S. Pardo, K.D. Lichtenbelt, M. Tartaglia, B.D. Gelb, I.R. Lemischka, Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome, Nature 465 (2010) 808-812. [12] K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, S. Yamanaka, Generation of mouse induced pluripotent stem cells without viral vectors, Science 322 (2008) 949-953. [13] M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, K. Hochedlinger, Induced pluripotent stem cells generated without viral integration, Science 322 (2008) 945-949. [14] M.H. Chin, M.J. Mason, W. Xie, S. Volinia, M. Singer, C. Peterson, G. Ambartsumyan, O. Aimiuwu, L. Richter, J. Zhang, I. Khvorostov, V. Ott, M. Grunstein, N. Lavon, N. Benvenisty, C.M. Croce, A.T. Clark, T. Baxter, A.D. Pyle, M.A. Teitell, M. Pelegrini, K. Plath, W.E. Lowry, Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures, Cell Stem Cell 5 (2009) 111-123. [15] D. Huangfu, K. Osafune, R. Maehr, W. Guo, A. Eijkelenboom, S. Chen, W. Muhlestein, D.A. Melton, Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2, Nat Biotechnol 26 (2008) 1269-1275. [16] L. Shao, W. Feng, Y. Sun, H. Bai, J. Liu, C. Currie, J. Kim, R. Gama, Z. Wang, Z. Qian, L. Liaw, W.S. Wu, Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame, Cell Res 19 (2009) 296-306. [17] B.W. Carey, S. Markoulaki, J. Hanna, K. Saha, Q. Gao, M. Mitalipova, R. Jaenisch, Reprogramming of murine and human somatic cells using a single polycistronic vector, Proc Natl Acad Sci U S A 106 (2009) 157-162. [18] K. Woltjen, I.P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.K. Sung, A. Nagy, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells, Nature 458 (2009) 766-770. [19] K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, K. Woltjen, Virus-free induction of pluripotency and subsequent excision of reprogramming factors, Nature 458 (2009) 771-775. [20] H. Zhou, S. Wu, J.Y. Joo, S. Zhu, D.W. Han, T. Lin, S. Trauger, G. Bien, S. Yao, Y. Zhu, G. Siuzdak, H.R. Scholer, L. Duan, S. Ding, Generation of induced pluripotent stem cells using recombinant proteins, Cell Stem Cell 4 (2009) 381-384. [21] L. Warren, P.D. Manos, T. Ahfeldt, Y.H. Loh, H. Li, F. Lau, W. Ebina, P.K. Mandal, Z.D. Smith, A. Meissner, G.Q. Daley, A.S. Brack, J.J. Collins, C. Cowan, T.M. Schlaeger, D.J. Rossi, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell 7 (2010) 618-630. [22] D. Subramanyam, S. Lamouille, R.L. Judson, J.Y. Liu, N. Bucay, R. Derynck, R. Blelloch, Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells, Nat Biotechnol 29 443-448. [23] J. Silva, O. Barrandon, J. Nichols, J. Kawaguchi, T.W. Theunissen, A. Smith, Promotion of reprogramming to ground state pluripotency by signal inhibition, PLoS Biol 6 (2008) e253. [24] S. Eminli, J. Utikal, K. Arnold, R. Jaenisch, K. Hochedlinger, Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression, Stem Cells 26 (2008) 2467-2474. [25] T. Aasen, A. Raya, M.J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. Bilic, V. Pekarik, G. Tiscornia, M. Edel, S. Boue, J.C. Izpisua Belmonte, Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes, Nat Biotechnol 26 (2008) 1276-1284. [26] Y. Amoh, M. Kanoh, S. Niiyama, Y. Hamada, K. Kawahara, Y. Sato, R.M. Hoffman, K. Katsuoka, Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells, J Cell Biochem 107 (2009) 1016-1020. [27] N. Sun, N.J. Panetta, D.M. Gupta, K.D. Wilson, A. Lee, F. Jia, S. Hu, A.M. Cherry, R.C. Robbins, M.T. Longaker, J.C. Wu, Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells, Proc Natl Acad Sci U S A 106 (2009) 15720-15725. [28] C. Li, J. Zhou, G. Shi, Y. Ma, Y. Yang, J. Gu, H. Yu, S. Jin, Z. Wei, F. Chen, Y. Jin, Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells, Hum Mol Genet 18 (2009) 4340-4349. [29] E. Galende, I. Karakikes, L. Edelmann, R.J. Desnick, T. Kerenyi, G. Khoueiry, J. Lafferty, J.T. McGinn, M. Brodman, V. Fuster, R.J. Hajjar, K. Polgar, Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells, Cell Reprogram 12 (2010) 117-125. [30] M.S. Tsai, J.L. Lee, Y.J. Chang, S.M. Hwang, Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol, Hum Reprod 19 (2004) 1450-1456. [31] M.S. Tsai, S.M. Hwang, Y.L. Tsai, F.C. Cheng, J.L. Lee, Y.J. Chang, Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells, Biol Reprod 74 (2006) 545-551. [32] P. De Coppi, G. Bartsch, Jr., M.M. Siddiqui, T. Xu, C.C. Santos, L. Perin, G. Mostoslavsky, A.C. Serre, E.Y. Snyder, J.J. Yoo, M.E. Furth, S. Soker, A. Atala, Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (2007) 100-106. [33] S. Da Sacco, S. Sedrakyan, F. Boldrin, S. Giuliani, P. Parnigotto, R. Habibian, D. Warburton, R.E. De Filippo, L. Perin, Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications, J Urol 183 (2010) 1193-1200. [34] A. Jezierski, A. Gruslin, R. Tremblay, D. Ly, C. Smith, K. Turksen, M. Sikorska, M. Bani-Yaghoub, Probing stemness and neural commitment in human amniotic fluid cells, Stem Cell Rev 6 (2010) 199-214. [35] J.M. Miranda-Sayago, N. Fernandez-Arcas, C. Benito, A. Reyes-Engel, J. Carrera, A. Alonso, Lifespan of human amniotic fluid-derived multipotent mesenchymal stromal cells, Cytotherapy 13 (2011) 572-581. [36] A.D. Ebert, J. Yu, F.F. Rose, Jr., V.B. Mattis, C.L. Lorson, J.A. Thomson, C.N. Svendsen, Induced pluripotent stem cells from a spinal muscular atrophy patient, Nature 457 (2009) 277-280. [37] J.T. Dimos, K.T. Rodolfa, K.K. Niakan, L.M. Weisenthal, H. Mitsumoto, W. Chung, G.F. Croft, G. Saphier, R. Leibel, R. Goland, H. Wichterle, C.E. Henderson, K. Eggan, Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons, Science 321 (2008) 1218-1221. [38] M.C. Marchetto, C. Carromeu, A. Acab, D. Yu, G.W. Yeo, Y. Mu, G. Chen, F.H. Gage, A.R. Muotri, A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells, Cell 143 (2010) 527-539. [39] A.L. Lahti, V.J. Kujala, H. Chapman, A.P. Koivisto, M. Pekkanen-Mattila, E. Kerkela, J. Hyttinen, K. Kontula, H. Swan, B.R. Conklin, S. Yamanaka, O. Silvennoinen, K. Aalto-Setala, Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture, Dis Model Mech (2011). [40] T. Yagi, D. Ito, Y. Okada, W. Akamatsu, Y. Nihei, T. Yoshizaki, S. Yamanaka, H. Okano, N. Suzuki, Modeling familial Alzheimer's disease with induced pluripotent stem cells, Hum Mol Genet 20 (2011) 4530-4539. [41] Y. Shi, P. Kirwan, J. Smith, G. MacLean, S.H. Orkin, F.J. Livesey, A human stem cell model of early Alzheimer's disease pathology in Down syndrome, Sci Transl Med 4 (2012) 124ra129. [42] B.S. Scott, L.E. Becker, T.L. Petit, Neurobiology of Down's syndrome, Prog Neurobiol 21 (1983) 199-237. [43] J.T. Coyle, M.L. Oster-Granite, J.D. Gearhart, The neurobiologic consequences of Down syndrome, Brain Res Bull 16 (1986) 773-787. [44] M. Masip, A. Veiga, J.C. Izpisua Belmonte, C. Simon, Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation, Mol Hum Reprod 16 (2010) 856-868. [45] A. Meissner, Epigenetic modifications in pluripotent and differentiated cells, Nat Biotechnol 28 (2010) 1079-1088. [46] M.T. Davisson, C. Schmidt, R.H. Reeves, N.G. Irving, E.C. Akeson, B.S. Harris, R.T. Bronson, Segmental trisomy as a mouse model for Down syndrome, Prog Clin Biol Res 384 (1993) 117-133. [47] J.T. Richtsmeier, A. Zumwalt, E.J. Carlson, C.J. Epstein, R.H. Reeves, Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome, Am J Med Genet 107 (2002) 317-324. [48] Z. Seregaza, P.L. Roubertoux, M. Jamon, B. Soumireu-Mourat, Mouse models of cognitive disorders in trisomy 21: a review, Behav Genet 36 (2006) 387-404. [49] K. Gardiner, A.C. Costa, The proteins of human chromosome 21, Am J Med Genet C Semin Med Genet 142C (2006) 196-205. [50] D.L. Nelson, R.A. Gibbs, Genetics. The critical region in trisomy 21, Science 306 (2004) 619-621. [51] L.E. Becker, D.L. Armstrong, F. Chan, Dendritic atrophy in children with Down's syndrome, Ann Neurol 20 (1986) 520-526. [52] B. Schmidt-Sidor, K.E. Wisniewski, T.H. Shepard, E.A. Sersen, Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months, Clin Neuropathol 9 (1990) 181-190. [53] L. Becker, T. Mito, S. Takashima, K. Onodera, Growth and development of the brain in Down syndrome, Prog Clin Biol Res 373 (1991) 133-152. [54] D.E. Kuhn, G.J. Nuovo, A.V. Terry, Jr., M.M. Martin, G.E. Malana, S.E. Sansom, A.P. Pleister, W.D. Beck, E. Head, D.S. Feldman, T.S. Elton, Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains, J Biol Chem 285 (2010) 1529-1543. [55] D.E. Kuhn, G.J. Nuovo, M.M. Martin, G.E. Malana, A.P. Pleister, J. Jiang, T.D. Schmittgen, A.V. Terry, Jr., K. Gardiner, E. Head, D.S. Feldman, T.S. Elton, Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts, Biochem Biophys Res Commun 370 (2008) 473-477. [56] M.S. Tsai, S.M. Hwang, K.D. Chen, Y.S. Lee, L.W. Hsu, Y.J. Chang, C.N. Wang, H.H. Peng, Y.L. Chang, A.S. Chao, S.D. Chang, K.D. Lee, T.H. Wang, H.S. Wang, Y.K. Soong, Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow, Stem Cells 25 (2007) 2511-2523. [57] B.K. Kim, S.E. Kim, J.H. Shim, D.H. Woo, J.E. Gil, S.K. Kim, J.H. Kim, Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells, FEBS Lett 580 (2006) 5869-5874. [58] C.M. Koch, C.V. Suschek, Q. Lin, S. Bork, M. Goergens, S. Joussen, N. Pallua, A.D. Ho, M. Zenke, W. Wagner, Specific age-associated DNA methylation changes in human dermal fibroblasts, PLoS One 6 (2011) e16679. [59] A. Banito, S.T. Rashid, J.C. Acosta, S. Li, C.F. Pereira, I. Geti, S. Pinho, J.C. Silva, V. Azuara, M. Walsh, L. Vallier, J. Gil, Senescence impairs successful reprogramming to pluripotent stem cells, Genes Dev 23 (2009) 2134-2139. [60] T.E. Ludwig, V. Bergendahl, M.E. Levenstein, J. Yu, M.D. Probasco, J.A. Thomson, Feeder-independent culture of human embryonic stem cells, Nat Methods 3 (2006) 637-646. [61] T.E. Ludwig, M.E. Levenstein, J.M. Jones, W.T. Berggren, E.R. Mitchen, J.L. Frane, L.J. Crandall, C.A. Daigh, K.R. Conard, M.S. Piekarczyk, R.A. Llanas, J.A. Thomson, Derivation of human embryonic stem cells in defined conditions, Nat Biotechnol 24 (2006) 185-187. [62] D. Ito, H. Okano, N. Suzuki, Accelerating progress in induced pluripotent stem cell research for neurological diseases, Ann Neurol 72 (2012) 167-174. [63] I. Gunaseeli, M.X. Doss, C. Antzelevitch, J. Hescheler, A. Sachinidis, Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery, Curr Med Chem 17 (2010) 759-766. [64] P. Porayette, M.J. Gallego, M.M. Kaltcheva, R.L. Bowen, S. Vadakkadath Meethal, C.S. Atwood, Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells, J Biol Chem 284 (2009) 23806-23817.
|