跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧懷恩
研究生(外文):Lu, Huai-En
論文名稱:以三染色體21人類中期妊娠羊水細胞建立誘導型多能幹細胞之研究
論文名稱(外文):Study of Induced Pluripotent Stem Cells from Human Second Trimester Amniotic Fluid Cells with Trisomy 21
指導教授:曾慶平黃效民黃效民引用關係
指導教授(外文):Tseng, Ching-PingHwang, Shiaw-Min
學位類別:博士
校院名稱:國立交通大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:72
中文關鍵詞:唐氏症三染色體21誘導型多能幹細胞
外文關鍵詞:Down syndromeTrisomy 21Induced pluripotent stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
唐氏症是常見的先天性遺傳疾病,主要由三染色體21 (Trisomy 21, T21) 所造成。臨床症狀主要為神經發育遲緩與智能發展不足。為了在體外研究Trisomy 21對於神經發育的影響,所仰賴的是一個可模擬神經發育的細胞模型。因此本研究主要以羊膜穿刺篩檢出具Trisomy 21 之羊水細胞(amniotic fluid-derived cells, AF cells),藉由導入表現Oct4, Sox2, c-Myc及 Klf4四個基因,重新再程式化(reprogramming)羊水細胞後,建立具有Trisomy 21之誘導型多能幹細胞(induced pluripotent stem cells, iPS cells)。接著利用iPS cells優越的分化能力,將其分化成神經前趨細胞(neuronal progenitor cells, NPCs) 及神經細胞,進行Trisomy 21對於神經發育的影響之後續研究。由實驗結果證實,本研究可成功建立具有分化能力之Trisomy 21之iPS cells (T21 AF-iPS cells),並且可成功將其分化為NPCs (T21 NPCs)。進一步分析這些T21 NPCs結果顯示,座落於21號染色體上之五個候選miRNA (let-7c, miR-99a, miR-125b, miR-155與miR-802)其表現量皆高於正常NPCs約1.5 倍,而受miR-155與miR-802 調控之神經發育標的基因- MeCP2則受到過度抑制而有顯著低表現。另外座落於21號染色體上的一個與阿茲海默症相關的基因amyloid precursor protein (APP)則有過度表現的現象。接著將NPCs分化成神經細胞,結果發現T21 NPCs分化成神經細胞的能力亦較差。本研究藉由羊水細胞建立之T21 AF-iPS cells,可成功在體外模擬唐氏症病患神經發育過程,且由於MeCP2在整個神經細胞發育扮演著重要角色,因此推測21號染色體上過量之miRNA表現所導致MeCP2 低表現量,可能為唐氏症病患神經發育遲緩因素之一,而過量的APP可能為唐氏症病患易罹患阿滋海默症的原因之一。
Down syndrome (DS), or Trisomy 21 (T21) syndrome, one of the most common chromosomal abnormalities, is caused by an extra duplication of chromosome 21. In studies of neuron development, experimental models based on human cells are considered to be the most desired and accurate for basic research. The generation of diseased induced pluripotent stem (iPS) cell is a critical step in understanding the developmental stages of complex neuronal diseases. Here, we generated human DS iPS cell lines from second trimester amniotic fluid (AF) cells with T21 by co-expressing Yamanaka factors (Oct4, Sox2, c-Myc and Klf4) through lentiviral delivery and subsequently differentiated them into neuronal progenitor cells (NPCs) for further analyses. T21 AF-iPS cells were characterized for the expression of pluripotent markers and for their ability to differentiate into all three germ layers by forming embryoid bodies in vitro and teratomas in vivo. The T21 AF-iPS cells maintained their unique pattern of chromosomal karyotypes: three pairs of chromosome 21. The level of amyloid precursor protein (APP) was significantly increased in NPCs derived from T21 AF-iPS cells compared with NPCs from normal AF-iPS cells. The expression levels of miR-155 and miR-802 in T21 AF-iPS-NPCs were highly elevated in the presence of low expression of MeCP2. We observed that T21 iPS-NPCs generated fewer neurons compared with controls. T21 iPS-NPCs exhibit developmental defects during neurogenesis. Our findings suggest that T21 AF-iPS cells serve as a good source to further elucidate the impairment neurogenesis of DS and the onset of Alzheimer’s disease.
中文摘要....................................................I
ABSTRACT..................................................II
ACKNOWLEDGMENTS..........................................III
CONTENTS...................................................V
LIST OF FIGURES AND TABLES..............................VIII
CHAPTER I Introduction.....................................1
1.1 Induced pluripotent stem cells.........................1
1.2 Generation of iPS cells from different strategies......3
1.3 Generation of iPS cells from amniotic fluid-derived cells......................................................4
1.4 Disease-specific iPS models............................5
1.5 Down syndrome..........................................6
CHAPTER II Motivations and Purposes of the Research........8
2.1 Selection of alkaline phosphatase positive AF-iPS cells......................................................8
2.2 Generation of T21 AF-iPS cells.........................9
2.3 The study of the neuron derived from T21 AF-iPS cells.....................................................11
CHAPTER III Materials and Methods.........................14
3.1 Selection of alkaline phosphatase positive AF-iPS cells.....................................................14
3.1.1 Cell culture of amniotic fluid-derived cells........14
3.1.2 Generation and selection of AF-iPS cells............14
3.1.3 Alkaline phosphatase and immunofluorescence staining..................................................16
3.1.4 Karyotype Analysis..................................17
3.1.5 RT-PCR..............................................17
3.1.6 In vitro differentiation.....18
3.1.7 In vivo differentiation.....18
3.2 Generation of T21 AF-iPS cells.....19
3.2.1 Cell culture and iPS cell generation.....19
3.2.2 Alkaline phosphatase and immunofluorescence staining.....20
3.2.3 Karyotype analysis.....21
3.2.4 RT-PCR and qRT-PCR.....21
3.2.5 In vitro differentiation.....22
3.2.6 In vivo differentiation.....22
3.3 The study of the neuron derived from T21 AF-iPS cells.....23
3.3.1 Neuronal progenitor cell and neuronal differentiation.....23
3.3.2 Immunofluorescence staining.....24
3.3.3 RT-PCR and qRT-PCR..................................24
3.3.4 Western blot analysis...............................25
CHAPTER IV Results........................................26
4.1 Selection of alkaline phosphatase positive AF-iPS cells.....................................................26
4.1.1 Generation of AF-iPS cells..........................26
4.1.2 Selection of fully stained AP+ AF-iPS...............26
4.1.3 Characterization of AF-iPS cells selected from feeder-free system...............................................27
4.1.4 In vitro and in vivo differentiation of AF-iPS cells.....................................................28
4.2 Generation of T21 AF-iPS cells........................38
4.2.1 Generation of iPS cells with trisomy 21.............29
4.2.2 Differentiation potential of T21 AF-iPS colonies....29
4.3 The study of the neuron derived from T21 AF-iPS cells.....................................................30
4.3.1 Differentiation of T21-iPS into neuronal progenitor cells.....................................................30
4.3.2 Hsa21-derived miRNA, gene and protein expression levels....................................................31
4.3.3 Differentiation of T21 iPS-NPCs into neuronal cells.....................................................31
CHAPTER V Discussion......................................33
5.1 Selection of alkaline phosphatase positive AF-iPS cells.....................................................33
5.2 Generation of T21 AF-iPS cells........................36
5.3 The study of the neuron derived from T21 AF-iPS cells.....................................................37
CHAPTER VI Conclusions....................................39
REFERENCE.................................................40
FIGURES...................................................48
TABLES....................................................71
PUBLICATIONS..............................................72

[1] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282 (1998) 1145-1147.
[2] J.B. Gurdon, Adult frogs derived from the nuclei of single somatic cells, Dev Biol 4 (1962) 256-273.
[3] I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, K.H. Campbell, Viable offspring derived from fetal and adult mammalian cells, Nature 385 (1997) 810-813.
[4] C.A. Cowan, J. Atienza, D.A. Melton, K. Eggan, Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells, Science 309 (2005) 1369-1373.
[5] D. Magnus, M.K. Cho, Ethics. Issues in oocyte donation for stem cell research, Science 308 (2005) 1747-1748.
[6] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (2006) 663-676.
[7] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131 (2007) 861-872.
[8] J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells, Science 318 (2007) 1917-1920.
[9] K. Saha, R. Jaenisch, Technical challenges in using human induced pluripotent stem cells to model disease, Cell Stem Cell 5 (2009) 584-595.
[10] I.H. Park, N. Arora, H. Huo, N. Maherali, T. Ahfeldt, A. Shimamura, M.W. Lensch, C. Cowan, K. Hochedlinger, G.Q. Daley, Disease-specific induced pluripotent stem cells, Cell 134 (2008) 877-886.
[11] X. Carvajal-Vergara, A. Sevilla, S.L. D'Souza, Y.S. Ang, C. Schaniel, D.F. Lee, L. Yang, A.D. Kaplan, E.D. Adler, R. Rozov, Y. Ge, N. Cohen, L.J. Edelmann, B. Chang, A. Waghray, J. Su, S. Pardo, K.D. Lichtenbelt, M. Tartaglia, B.D. Gelb, I.R. Lemischka, Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome, Nature 465 (2010) 808-812.
[12] K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, S. Yamanaka, Generation of mouse induced pluripotent stem cells without viral vectors, Science 322 (2008) 949-953.
[13] M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, K. Hochedlinger, Induced pluripotent stem cells generated without viral integration, Science 322 (2008) 945-949.
[14] M.H. Chin, M.J. Mason, W. Xie, S. Volinia, M. Singer, C. Peterson, G. Ambartsumyan, O. Aimiuwu, L. Richter, J. Zhang, I. Khvorostov, V. Ott, M. Grunstein, N. Lavon, N. Benvenisty, C.M. Croce, A.T. Clark, T. Baxter, A.D. Pyle, M.A. Teitell, M. Pelegrini, K. Plath, W.E. Lowry, Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures, Cell Stem Cell 5 (2009) 111-123.
[15] D. Huangfu, K. Osafune, R. Maehr, W. Guo, A. Eijkelenboom, S. Chen, W. Muhlestein, D.A. Melton, Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2, Nat Biotechnol 26 (2008) 1269-1275.
[16] L. Shao, W. Feng, Y. Sun, H. Bai, J. Liu, C. Currie, J. Kim, R. Gama, Z. Wang, Z. Qian, L. Liaw, W.S. Wu, Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame, Cell Res 19 (2009) 296-306.
[17] B.W. Carey, S. Markoulaki, J. Hanna, K. Saha, Q. Gao, M. Mitalipova, R. Jaenisch, Reprogramming of murine and human somatic cells using a single polycistronic vector, Proc Natl Acad Sci U S A 106 (2009) 157-162.
[18] K. Woltjen, I.P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.K. Sung, A. Nagy, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells, Nature 458 (2009) 766-770.
[19] K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, K. Woltjen, Virus-free induction of pluripotency and subsequent excision of reprogramming factors, Nature 458 (2009) 771-775.
[20] H. Zhou, S. Wu, J.Y. Joo, S. Zhu, D.W. Han, T. Lin, S. Trauger, G. Bien, S. Yao, Y. Zhu, G. Siuzdak, H.R. Scholer, L. Duan, S. Ding, Generation of induced pluripotent stem cells using recombinant proteins, Cell Stem Cell 4 (2009) 381-384.
[21] L. Warren, P.D. Manos, T. Ahfeldt, Y.H. Loh, H. Li, F. Lau, W. Ebina, P.K. Mandal, Z.D. Smith, A. Meissner, G.Q. Daley, A.S. Brack, J.J. Collins, C. Cowan, T.M. Schlaeger, D.J. Rossi, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell 7 (2010) 618-630.
[22] D. Subramanyam, S. Lamouille, R.L. Judson, J.Y. Liu, N. Bucay, R. Derynck, R. Blelloch, Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells, Nat Biotechnol 29 443-448.
[23] J. Silva, O. Barrandon, J. Nichols, J. Kawaguchi, T.W. Theunissen, A. Smith, Promotion of reprogramming to ground state pluripotency by signal inhibition, PLoS Biol 6 (2008) e253.
[24] S. Eminli, J. Utikal, K. Arnold, R. Jaenisch, K. Hochedlinger, Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression, Stem Cells 26 (2008) 2467-2474.
[25] T. Aasen, A. Raya, M.J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. Bilic, V. Pekarik, G. Tiscornia, M. Edel, S. Boue, J.C. Izpisua Belmonte, Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes, Nat Biotechnol 26 (2008) 1276-1284.
[26] Y. Amoh, M. Kanoh, S. Niiyama, Y. Hamada, K. Kawahara, Y. Sato, R.M. Hoffman, K. Katsuoka, Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells, J Cell Biochem 107 (2009) 1016-1020.
[27] N. Sun, N.J. Panetta, D.M. Gupta, K.D. Wilson, A. Lee, F. Jia, S. Hu, A.M. Cherry, R.C. Robbins, M.T. Longaker, J.C. Wu, Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells, Proc Natl Acad Sci U S A 106 (2009) 15720-15725.
[28] C. Li, J. Zhou, G. Shi, Y. Ma, Y. Yang, J. Gu, H. Yu, S. Jin, Z. Wei, F. Chen, Y. Jin, Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells, Hum Mol Genet 18 (2009) 4340-4349.
[29] E. Galende, I. Karakikes, L. Edelmann, R.J. Desnick, T. Kerenyi, G. Khoueiry, J. Lafferty, J.T. McGinn, M. Brodman, V. Fuster, R.J. Hajjar, K. Polgar, Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells, Cell Reprogram 12 (2010) 117-125.
[30] M.S. Tsai, J.L. Lee, Y.J. Chang, S.M. Hwang, Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol, Hum Reprod 19 (2004) 1450-1456.
[31] M.S. Tsai, S.M. Hwang, Y.L. Tsai, F.C. Cheng, J.L. Lee, Y.J. Chang, Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells, Biol Reprod 74 (2006) 545-551.
[32] P. De Coppi, G. Bartsch, Jr., M.M. Siddiqui, T. Xu, C.C. Santos, L. Perin, G. Mostoslavsky, A.C. Serre, E.Y. Snyder, J.J. Yoo, M.E. Furth, S. Soker, A. Atala, Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (2007) 100-106.
[33] S. Da Sacco, S. Sedrakyan, F. Boldrin, S. Giuliani, P. Parnigotto, R. Habibian, D. Warburton, R.E. De Filippo, L. Perin, Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications, J Urol 183 (2010) 1193-1200.
[34] A. Jezierski, A. Gruslin, R. Tremblay, D. Ly, C. Smith, K. Turksen, M. Sikorska, M. Bani-Yaghoub, Probing stemness and neural commitment in human amniotic fluid cells, Stem Cell Rev 6 (2010) 199-214.
[35] J.M. Miranda-Sayago, N. Fernandez-Arcas, C. Benito, A. Reyes-Engel, J. Carrera, A. Alonso, Lifespan of human amniotic fluid-derived multipotent mesenchymal stromal cells, Cytotherapy 13 (2011) 572-581.
[36] A.D. Ebert, J. Yu, F.F. Rose, Jr., V.B. Mattis, C.L. Lorson, J.A. Thomson, C.N. Svendsen, Induced pluripotent stem cells from a spinal muscular atrophy patient, Nature 457 (2009) 277-280.
[37] J.T. Dimos, K.T. Rodolfa, K.K. Niakan, L.M. Weisenthal, H. Mitsumoto, W. Chung, G.F. Croft, G. Saphier, R. Leibel, R. Goland, H. Wichterle, C.E. Henderson, K. Eggan, Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons, Science 321 (2008) 1218-1221.
[38] M.C. Marchetto, C. Carromeu, A. Acab, D. Yu, G.W. Yeo, Y. Mu, G. Chen, F.H. Gage, A.R. Muotri, A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells, Cell 143 (2010) 527-539.
[39] A.L. Lahti, V.J. Kujala, H. Chapman, A.P. Koivisto, M. Pekkanen-Mattila, E. Kerkela, J. Hyttinen, K. Kontula, H. Swan, B.R. Conklin, S. Yamanaka, O. Silvennoinen, K. Aalto-Setala, Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture, Dis Model Mech (2011).
[40] T. Yagi, D. Ito, Y. Okada, W. Akamatsu, Y. Nihei, T. Yoshizaki, S. Yamanaka, H. Okano, N. Suzuki, Modeling familial Alzheimer's disease with induced pluripotent stem cells, Hum Mol Genet 20 (2011) 4530-4539.
[41] Y. Shi, P. Kirwan, J. Smith, G. MacLean, S.H. Orkin, F.J. Livesey, A human stem cell model of early Alzheimer's disease pathology in Down syndrome, Sci Transl Med 4 (2012) 124ra129.
[42] B.S. Scott, L.E. Becker, T.L. Petit, Neurobiology of Down's syndrome, Prog Neurobiol 21 (1983) 199-237.
[43] J.T. Coyle, M.L. Oster-Granite, J.D. Gearhart, The neurobiologic consequences of Down syndrome, Brain Res Bull 16 (1986) 773-787.
[44] M. Masip, A. Veiga, J.C. Izpisua Belmonte, C. Simon, Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation, Mol Hum Reprod 16 (2010) 856-868.
[45] A. Meissner, Epigenetic modifications in pluripotent and differentiated cells, Nat Biotechnol 28 (2010) 1079-1088.
[46] M.T. Davisson, C. Schmidt, R.H. Reeves, N.G. Irving, E.C. Akeson, B.S. Harris, R.T. Bronson, Segmental trisomy as a mouse model for Down syndrome, Prog Clin Biol Res 384 (1993) 117-133.
[47] J.T. Richtsmeier, A. Zumwalt, E.J. Carlson, C.J. Epstein, R.H. Reeves, Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome, Am J Med Genet 107 (2002) 317-324.
[48] Z. Seregaza, P.L. Roubertoux, M. Jamon, B. Soumireu-Mourat, Mouse models of cognitive disorders in trisomy 21: a review, Behav Genet 36 (2006) 387-404.
[49] K. Gardiner, A.C. Costa, The proteins of human chromosome 21, Am J Med Genet C Semin Med Genet 142C (2006) 196-205.
[50] D.L. Nelson, R.A. Gibbs, Genetics. The critical region in trisomy 21, Science 306 (2004) 619-621.
[51] L.E. Becker, D.L. Armstrong, F. Chan, Dendritic atrophy in children with Down's syndrome, Ann Neurol 20 (1986) 520-526.
[52] B. Schmidt-Sidor, K.E. Wisniewski, T.H. Shepard, E.A. Sersen, Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months, Clin Neuropathol 9 (1990) 181-190.
[53] L. Becker, T. Mito, S. Takashima, K. Onodera, Growth and development of the brain in Down syndrome, Prog Clin Biol Res 373 (1991) 133-152.
[54] D.E. Kuhn, G.J. Nuovo, A.V. Terry, Jr., M.M. Martin, G.E. Malana, S.E. Sansom, A.P. Pleister, W.D. Beck, E. Head, D.S. Feldman, T.S. Elton, Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains, J Biol Chem 285 (2010) 1529-1543.
[55] D.E. Kuhn, G.J. Nuovo, M.M. Martin, G.E. Malana, A.P. Pleister, J. Jiang, T.D. Schmittgen, A.V. Terry, Jr., K. Gardiner, E. Head, D.S. Feldman, T.S. Elton, Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts, Biochem Biophys Res Commun 370 (2008) 473-477.
[56] M.S. Tsai, S.M. Hwang, K.D. Chen, Y.S. Lee, L.W. Hsu, Y.J. Chang, C.N. Wang, H.H. Peng, Y.L. Chang, A.S. Chao, S.D. Chang, K.D. Lee, T.H. Wang, H.S. Wang, Y.K. Soong, Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow, Stem Cells 25 (2007) 2511-2523.
[57] B.K. Kim, S.E. Kim, J.H. Shim, D.H. Woo, J.E. Gil, S.K. Kim, J.H. Kim, Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells, FEBS Lett 580 (2006) 5869-5874.
[58] C.M. Koch, C.V. Suschek, Q. Lin, S. Bork, M. Goergens, S. Joussen, N. Pallua, A.D. Ho, M. Zenke, W. Wagner, Specific age-associated DNA methylation changes in human dermal fibroblasts, PLoS One 6 (2011) e16679.
[59] A. Banito, S.T. Rashid, J.C. Acosta, S. Li, C.F. Pereira, I. Geti, S. Pinho, J.C. Silva, V. Azuara, M. Walsh, L. Vallier, J. Gil, Senescence impairs successful reprogramming to pluripotent stem cells, Genes Dev 23 (2009) 2134-2139.
[60] T.E. Ludwig, V. Bergendahl, M.E. Levenstein, J. Yu, M.D. Probasco, J.A. Thomson, Feeder-independent culture of human embryonic stem cells, Nat Methods 3 (2006) 637-646.
[61] T.E. Ludwig, M.E. Levenstein, J.M. Jones, W.T. Berggren, E.R. Mitchen, J.L. Frane, L.J. Crandall, C.A. Daigh, K.R. Conard, M.S. Piekarczyk, R.A. Llanas, J.A. Thomson, Derivation of human embryonic stem cells in defined conditions, Nat Biotechnol 24 (2006) 185-187.
[62] D. Ito, H. Okano, N. Suzuki, Accelerating progress in induced pluripotent stem cell research for neurological diseases, Ann Neurol 72 (2012) 167-174.
[63] I. Gunaseeli, M.X. Doss, C. Antzelevitch, J. Hescheler, A. Sachinidis, Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery, Curr Med Chem 17 (2010) 759-766.
[64] P. Porayette, M.J. Gallego, M.M. Kaltcheva, R.L. Bowen, S. Vadakkadath Meethal, C.S. Atwood, Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells, J Biol Chem 284 (2009) 23806-23817.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top