跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家豪
研究生(外文):Lin, Jia-Hoa
論文名稱:以鐵鐵氫化酶為基礎仿生合成金屬氫簇族並進行光催化產氫研究
論文名稱(外文):Biomimetic Synthesis of [FeFe] Based H-Cluster for Photocatalytic Hydrogen Production
指導教授:吳東昆
指導教授(外文):Wu,Tung-Kung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:184
中文關鍵詞:氫化酶氫氣能源
外文關鍵詞:HydrogenaseHydrogenEnergy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在自然界,氫氣的產生可藉由氫化酶的催化生成。氫化酶可藉由活性位金屬中心的不同分成三大類,分別為鐵-鐵氫化酶、鎳-鐵氫化酶及單鐵氫化酶 。而其中的鐵-鐵氫化酶的催化中心主要為二鐵二硫的結構,並主要用於氫氣的生成。而研究的目的主要為模仿此結構合成以不同金屬為中心的氫簇族並用於催化氫氣的生成。我的研究目標為合成此類蛋白的二鐵二硫中心並以共價連結具有不同官能基的膦,以及將中心的鐵原子置換成錸原子並研究其在不同溫度及不同相的光催化產氫性質。在此研究中,首先我合成以鐵做為仿生的鐵-鐵氫化酵素,並將之共價連結具有不同官能基的膦,分別於水相及有機相下做光催化產氫的研究,接著合成以錸金屬為中心的二錸二硫結構並添加不同的膦研究其催化效率。研究中所合成的化合物利用質譜儀測定其分子量,及利用單晶X光繞射鑑定其結構並利用紫外光-可見光光譜儀及循環伏安法測試其光學及電化學特性。在計算化學上,所使用的軟體為Gaussian09,而計算的分子結構來自於單晶繞射的結構,並做結構優化分析化合物的最低電子未占有軌域(LUMO)、最高電子占有軌域(HOMO)、電量分布及紅外光譜震動圖譜。在產氫系統上分成有機相及水相,在有機相中主要以甲酸作為氫氣的來源,並分別以二鐵二硫的氫簇族及二錸二硫的氫簇族作為催化劑,在以二鐵二硫當催化劑的實驗中發現到在添加推電子基的膦化合物其催化效果優於拉電子基,因此接著將其與膦化合物進行共價方式連接後,發現到在接上膦衍生物後其催化效率降低,而將中心金屬置換成錸之後,其催化效率也沒有以鐵為中心金屬好。在水相中,以共價性連接三(4-甲氧基苯基)膦P(p-C6H4OMe)3二鐵二硫結構為最佳,而在未來將進一步研究其產氫的反應機制。
在DFT 理論計算上,主要以釕的金屬簇族作為計算的目標,在比較其不同的配體的衍生物後其HOMO及LUMO的變化,以及紅外光譜圖譜的模擬,並用於解釋產氫的結果,在結果上發現到當共價連接上膦衍生物後,其HOMO及LUMO的能量上具有向上提升,並降低其軌域能接的能隙,在未來可用於比較其產氫的結果。

In nature, hydrogen production is catalyzed by hydrogenases (H2ase). Hydrogenases can be classified into three types depending on different central metals, [Fe-Fe], [Fe-Ni] or [Fe] within the enzymes. The study of the active site of [Fe-Fe] hydrogenase, diiron carbonyl sulfur cluster (also named H-cluster), provides a structural basis for hydrogen generation. The aim of the research is to mimic the structure of H-cluster with different metals and apply it as a catalyst for hydrogen production. My goal is to synthesize artificial [Fe-Fe] H-cluster and covalent link to different phosphine ligands and I also replaces the iron metal centers with rhenium and study their catalytic activity for photocatalytic hydrogen production at different temperatures and different phases. In this study, we first synthesize iron-sulfur cluster ([Fe2(CO)6(μ-pdt)]) and covalent link P-ligabds ([Fe2(CO)5(μ-pdt)(P-ligand)]) and rhenium (Re)-substituted H-cluster mimics complex ([Re2(CO)6(μ-pdt)]). Then the synthesized metal-sulfur clusters were subjected to photocatalytic hydrogen production studies in organic phase and aqueous phase. In addition, different P-ligands were added into the system to study the efficiency. All the synthetic compounds were checked by MS spectra and the characteristics of the complex was analyzed by UV-Vis spectrum and cyclic voltammetry. The experimental structures here elucidated by DFT calculations, and the orbital analyses optimized the analyzed the LUMO, HUMO, charge distribution and IR spectra were performed based on the optimized geometries.
Hydrogen generation could proceed in organic phase and aqueous phase. In organic phase, formic acid is the hydrogen source. For iron-sulfur clusters, additional added P-ligand with electron donating functional group are better than electron withdrawing. And the covalent link P-ligand to iron-sulfur clusters are worse than without linking to P-ligand. And the replaced the center iron into rhenium is also worse than it. In aqueous phase system, covalent link P(p-C6H4OMe)3 to iron-sulfur cluster is the best. The mechanism of hydrogen evolution by various metal sulfur clusters will be elucidated in the future.
In DFT calculations, the ruthenium-sulfur clusters are modeled to calculate energy level of HOMO and LUMO and the IR spectroscopy. And using these data to explain the hydrogen generation results. According to the energetics, we found that the energy level increased after covalent link to P-ligand, and the band gap between HOMO-LUMO is decreased. The computational results could be further used to predict the hydrogen generation process.

中文摘要 i
Abstract iii
誌謝 (Acknowledgement) v
Table of Contains vii
Table of Figures x
Table of Tables xv
Table of Schemes xviii
Chapter 1 Introduction 1
1.1 Energy 1
1.2 Hydrogen Energy 2
1.3 Hydrogenases Family 4
1.3.1 [FeFe]-hydrogenase 6
1.3.2 [NiFe] hydrogenase 9
1.3.3 [Fe] hydrogenase 13
1.4 Photosynthesis and Photocatalytic Hydrogen Evolution 16
1.4.1 Photosynthesis 17
1.4.2 Photocatalytic Hydrogen Evolution 18
1.5 Metal Carbonyl 19
1.6 Rhenium 20
1.6.1 Rhenium Complex 21
1.7 Computational Chemistry 22
1.8 Research Motive 23
1.9 Specific Aims 24
1.9.1 Central Metal-Rhenium 24
1.9.2 Phosphine Ligand effect 25
1.9.3 Ligand Effect 26
Chapter 2 Material and Methods 28
2.1 Experimental Materials 28
2.2 Experimental Apparatus 29
2.3 Synthetic Procedure 30
2.3.1 Preparation of [Re2(CO)6(μ-pdt)] 30
2.3.2 Preparation of [Ir(ppy)2(bpy)][PF6] 30
2.3.3 Preparation of [Fe2(CO)6(μ-pdt)] 33
2.3.4 Preparation of [Fe2(CO)5(μ-pdt)(PPh3) ] 33
2.3.5 Preparation of [Fe2(CO)5(μ-pdt){P(o-C6H4OMe)3} ] 34
2.3.6 Preparation of [Fe2(CO)5(μ-pdt){P(p-C6H4OMe)3}] 34
2.3.7 Preparation of [Fe2(CO)5(μ-pdt){P(p-tol)3} ] 35
2.3.8 Preparation of [Fe2(CO)5(μ-pdt)P(m-tol)3 ] 35
2.4 Hydrogen Generation 36
2.4.1 Aqueous Phase 36
2.4.2 Organic Phase 36
2.4.2.1 Hydrogen Generation of Rhenium thiol cluster in Organic Phase 36
2.4.2.1 Hydrogen Generation of Iron thiol cluster in Organic Phase 37
2.5 DFT Calculation 37
2.5.1 DFT Calculation of Ruthenium-thiol cluster 37
Chapter 3 Results and Discussion 38
3.1 Compound Synthesis and Structure Analysis 38
3.1.1 [Ir(ppy)2(bpy)][PF6] Structure analysis 38
3.1.2 Structural Characterization of [Re2(CO)6(μ-pdt)] 39
3.1.3 Structural Characterization of [Fe2(CO)6(μ-pdt)] 39
3.1.4 Structural Characterization of [Fe2(CO)5(μ-pdt)(PPh3)] 42
3.1.5 Structural Characterization of [Fe2(CO)5(μ-pdt){P(o-C6H4OMe)3}] 44
3.1.6 Structural Characterization of [Fe2(CO)5(μ-pdt){P(p-C6H4OMe)3}] 47
3.1.7 Structural Characterization of [Fe2(CO)5(μ-pdt){P(p-tol)3}] 50
3.1.8 Structural Characterization of [Fe2(CO)5(μ-pdt){P(m-tol)3}] 53
3.2 Compound Electrochemical Analysis 54
3.2.1 Electronic Characterization of [Re2(CO)6(μ-pdt)] and [Re2(CO)10] 55
3.2.2 Electronic Characterization of [Ir(bpy)(ppy)2]PF6 and [Ru(bpy)3]Cl2 57
3.2.3 Electronic Characterization of [Fe2(CO)6(μ-pdt)] and [Fe2(CO)5(μ-pdt)(PPh3)] 60
3.2.4 Electronic Characterization of [Fe2(CO)5(μ-pdt){P(p-tol)3}] and [Fe2(CO)5(μ-pdt){P(m-tol)3}] 63
3.2.5 Electronic Characterization of [Fe2(CO)5(μ-pdt){P(o-C6H4OMe)3}] and [Fe2(CO)5(μ-pdt{P(p- C6H4OMe)3}] 66
3.3 Ultraviolet-Visible Absorption Spectra Analysis of Metal-Sulfur Cluster. 70
3.3.1 UV-Vis Absorption Spectra Analysis of [Re2(CO)6(μ-pdt)] and [Re2(CO)10] 70
3.3.2 UV-Vis Absorption Spectra Analysis of [Fe2(CO)6(μ-pdt)] and [Fe2(CO)5(μ-pdt)(P-Ligand)] 71
3.3.2 UV-Vis Absorption Spectra Analysis of [Ir(bpy)(ppy)2]PF6 and [Ru(bpy)3]Cl2 72
3.4 Photocatalytic Hydrogen Generation 72
3.4.1 Calibration Cure 73
3.4.2 Formic acid as Hydrogen Source in Organic Phase 74
3.4.2.1 Rhenium clusters as catalyst in Organic Phase 74
3.4.2.1.1 [Re2(CO)10] as catalyst in Organic Phase 75
3.4.2.1.2 [Re2(CO)6(μ-pdt)] as catalyst in Organic Phase 78
3.4.2.2 Iron-sulfur cluster as catalyst in Organic Phase 81
3.4.2.2.1 [Fe2(CO)6(μ-pdt)] as catalyst in Organic Phase 85
3.4.2.2.2 [Fe2(CO)5(μ-pdt)(P-Ligand)] as catalyst in Organic Phase 87
3.4.3 Water as Hydrogen Source in Aqueous Phase 88
3.4.3.1 Rhenium cluster as catalyst in Aqueous Phase 89
3.4.3.2 Iron clusters as catalyst in Aqueous Phase 94
3.4.4 Mechanism Proposed in Organic Phase and Aqueous 99
3.5 DFT Calculation of Ruthenium H-clusters 102
3.5.1 DFT Calculation of [Ru2(CO)6(μ-pdt)] 102
3.5.2 DFT Calculation of [Ru2(CO)6(μ-pdt){P(p-C6H4OMe)3}] 105
3.5.3 DFT Calculation of [Ru2(CO)6(μ-pdt){P(o-C6H4OMe)3}] 108
3.5.4 DFT Calculation of [Ru2(CO)6(μ-pdt){P(p-tol)3}] 111
3.5.5 DFT Calculation of [Ru2(CO)6(μ-pdt){P(m-tol)3}] 114
3.5.6 DFT Calculation of [Ru2(CO)6(μ-pdt){P(o-tol)3}] 117
3.5.7 DFT Calculation of [Ru2(CO)6(μ-pdt){P(p-C6H4F)3}] 120
3.5.8 DFT Calculation of [Ru2(CO)6(μ-pdt){P(p-C6H4CF3)3}] 123
3.5.9 DFT Calculation of [Ru2(CO)6(μ-pdt)(PPh3)] 126
3.5.11 DFT Calculation of Ruthenium clusters Summary 129
Chapter 4 Conclusions 132
Chapter 5 Future Perspectives 134
Chapter 6 References 135
Chapter 7 Appendix 140
1. BP Statistical Review of World Energy June 2012, British Petroleum 2012, June
2. NOAA “Temperature change and carbon dioxide change” [online]. Available: http://www.ncdc.noaa.gov/paleo/globalwarming/temperature-change.html
3. The 4th International Conference of Atmospheric Action Network East Asia, Taipei, 1998/9/26-27
4. Lewis, N.S.; Nocera, D.G. Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 15729
5. P. P Edward; V. L Kuznetsov,; W. I. F David, Phil. Trans. R. Soc. A., 2007, 365, 1043-1056
6. Andreas Z., Mitig Adapt Strat Glob Change, 2007, 12, 343-365
7. Paulette M.; Vignais,; Bernard Billoud, Chem. Rev., 2007, 107, 4206-4272
8. Rudolf K. Thauer, Microbiology, 1998, 144, 2377-2406
9. Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-K;aucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U., Science, 2008, 321, 572-575
10. Frey, M., Chembiochem, 2002, 3, 153-160
11. Greg A. N.; Felton,; Aaron K. Vannucci,; Jinzhu Chen,; L. Tori Lockett,; Noriko Okumura,; Benjamin J. Petro,; Uzma I. Zakai,; Dennis H. Evans,; Richard S. Glass,; Dennis L. Lichtenberger, J. AM. Chem. Soc., 2007, 129, 12521-12530
12. Shima, S.; Thauer, R. K., Chem. Rec., 2007, 7, 37-46

13. Arti S. Pandey; Travis V. Harris; Logan J. Giles; John W. Peter; Robert K. Szilagyi, J. Am. Chem. Soc., 2008, 130, 4533-4540
14. Peters, J.W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C., Science, 1998, 282, 1853-1858
15. Marc Forestier; Paul Kin; Liping Zhang; Matthew Posewitz; Sarah Schwarzer; Thomas Happe; Maria L. Ghirardi; Michael Seibert , Eur. J. Biochem. 2003, 270, 2750-2758
16. Wolfgang Lubitz; Edward J. Reijerse; Messinger, Energy & Environmental Science, 2008, 1, 15-31
17. Jesse W.; Michael B. Hall; Marcetta Y. Darensbourg, PNAS, 2005, 47, 16911-16912
18. Simon P. J. Albracht ; Winfried Roseboom; E. Claude Hatchikian, J. Biol. Inorg. Chem., 2006, 11, 88
19. Greco, C.; Bruschi, M.; De Gioia, L.; Ryde, U., Inorg. Chem., 2007, 46, 5911-5921
20. Hua-Jun Fan; Michael B. Hall, J. Am. Chem. Soc., 2001, 123,3 828-3829
21. Giuseppe Zapella; Claudio Greco; Piercarlo Fantucci; Luca De Gioia, Inorg. Chem., 2006, 45, 4109-4118
22. Volbeda A.; Charon MH; Piras C.; Hatchikian EC; Frey M; Fontecilla-Camps JC,Nature,1995,373,580-587
23. Boi Hanh Huynh; Daulat S. Patil, J. Bio. Chem, 1987, 262, 795-800
24. R .P. Happe; W. Roseboom; A .J. Pierik; S. P. J. Albracht, K. A. Bagey,Nature 1997, 385, 126
25. A Volbeda; E Garcin; C Piras; A.L deLacey; V.M Fernandez; E.C Hatchikian; M Frey; J. C Fontecilla-Camps, J. Am. Chem. Soc., 1997, 118, 12989-12996
26. Mattias Stein; Wolfgang Lubitz,Current Opinion in Chemical Biology 2002, 6, 243-249
27. Antonio J. Pierik; Winfried Roseboom; Randolph P. Happe; Kimberly A. Bagley; Simon P. J. Albracht, J. Biol. Chem., 1999, 274, 3331
28. Hideaki Ogata; Wolfgang Lubitz; Yoshiki Higuchi, Dalton Trans., 2009, 7577-7587
29. E. Garcin; X. Vernede; E.C. Hatchikian; A. Volbeda; M. Frey,Structure, 1999, 7, 557-566
30. Seiji Ogo; Ryota Kabe; Keiji Uehara; Bunsho Kure; Takashi Nishimura; Saija C. Menon; Ryosuke Harada; Shunichi Fukuzumi; Yoshiki Higuchi; Takashi Ohhara; Taro Tamada; Ryota Kuroki, Science, 2007, 316, 585-587
31. Jesse W Tye; Michael B. Hall, Chem. Rev, 2007, 107, 4414-4435
32. Randolph P. Happe; Winfried Roseboom; Gabriele Egert; Cornelius G. Friedrich; Christian Massanz; Barbel Friedrich; Simon P.J. Albracht, FEBS Letters, 2000, 466, 259-263
33. Michael J. Corr; John A. Murphy, Chem. Soc. Rev., 2011, 40, 2279
34. S. Shima, E. J. Lyon; R. K. Thauer; B. Mienert, B. Bill, J. Am. Chem. Soc., 2005, 127, 10430
35. S. Vogt ; E. J. Lyon; S. Shima; R. K. Thauer, J. Biol. Inorg. Chem., 2008, 13, 97
36. Takeshi Hiromoto; Eberhard Warkentin; Johanna Moll; Ulrich Ermler; Seigo Shima, Angew. Chem. Int. Ed., 2009, 48, 6457-6460
37. Akihio Kudo; Yugo Miseki, Chem. Soc. Rev., 2009, 38, 253-278
38. Albert Boddien; Felix Gartner; Ralf Jackstell; Henrik Junge; Anke Spannenberg; Wolfgang Baumann; ralf Ludwig; Mathias Beller, Angew. Chem. Int. Engl, 2010, 49, 8993-8996
39. Monte L Helm; Michael P. Stewart; R. Morris Bullock; M. Rakowski DuBois; Daniel L. DuBois, Science, 2011, 333, 863-866
40. David L. Nelson; Michael M. Cox, Lehninger Principles of Biochemistry fourth edition, 2004, 723-744
41. Albert Boddien; Bjon Loges; Felix Gartner; Christian Torborg; Koichi Fumino; Henrilk Junge; Ralf Ludwig; Matthisa Beller, J. Am. Chem. Soc., 2010, 132, 8924-8934
42. Gary L. Miessler; Donald A. Tarr, Inorganic chemistry Third Edition.
43. Wolfgang A. Herrmann; Helmut Biersack; Manfred L. Ziegler; Klaus Weidenhammer; Rolf Siegel; Dieter Rehder, J. AM. Chem. Soc., 1981, 103, 1692-1699
44. Von Walter Noddack; Ida Tacke, Berlin, Naturwissenschaften, 1925, 13, 567-574
45. Hiroyuki Takeda; Masataka Ohashi; Takao Tani; Osamu Ishitani; Shinjg Inagaki, Inorg. Chem., 2010, 49, 4554-4559
46. Hong Yan Wang; Wen Guang Wang; Gang Si; Feng Wang; Chen Ho Tung; Li Zhu Wu,Langmuir, 2010, 26, 9766-9771
47. Nathan D. McClenaghan; Yoann Leydet; Beatrice Maubert; Maria Teresa Indelli; Sebasiano Campagna,Coordination Chemistr Reviews, 2005, 249, 1336-1350
48. Shunsuke Sato; Kazuhide Koike; Haruo Inoue; Osamu Ishitani,Photochem. Photobiol. Sci., 2007, 6, 454-46
49. Bobak Gholamkhass; Hiroaki Mametsuka; Kazuhide Koike; Toyoaki Tanabe; Masaoki Fure; Osamu Ishitani, Inorg. Chem., 2005, 44, 2326-2336
50. John P. Perdew, Phys.Rev. B, 1986, 33, 8822-8824
51. Vincenzo Balzani; Giacomo Bergamini; Filippo Marchioni; Paola Ceroni, Coordination Chemistry Review, 2006, 250, 1254-1266
52. Sebastien Ladouceur; Daniel Fortin; Eli Zysman-Colman, Inorg. Chem., 2010, 252, 2552-2571
53. Matthew J. Almond; Rachel H. Orrin, J. Chem. Soc. Dalton Trans., 1992, 1229-1234
54. James D. Blakemore; Nathan D. Schley; David Balcells; Jonathan F. Hull; Gerard W. Olack; Christopher D. Incarvito; Odile Eisenstein; Gary W. Brudvig; Robert H. Crabtree, J. AM. Chem. Soc., 2010, 132, 16017-16029
55. David R. Card; Theodore L. Brown, J. AM. Chem. Soc., 1982, 104, 6340-6347
56. Joseph A. Wright; Christopher J. Pickett, Chem. Comm., 2009, 5719-5721
57. Daniel Streich; Yeni Astuti; Michele Orlandi; Lennart Schwartz; Reiner Lomoth; Leif Hammarstrçm; Sascha Ott, Chem. Eur. J., 2010, 16, 60-63
58. Filip Teply; Collect. Czech. Chem. Commun. 2011, 76, 859-917

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top