|
[1] Kershaw RM, Hodges NJ. (2012). Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis. 27:501-10.
[2] Boiteux S, Radicella JP. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Archives of biochemistry and biophysics. 377:1-8.
[3] Chung, S. J., &; Verdine, G. L. (2004). Structures of end products resulting from lesion processing by a DNA glycosylase/lyase. Chem Biol, 11(12), 1643-1649. doi: 10.1016/j.chembiol.2004.09.014
[4] Klungland, A., &; Bjelland, S. (2007). Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst), 6(4), 481-488. doi: 10.1016/j.dnarep.2006.10.012
[5] Crenshaw, C. M., Nam, K., Oo, K., Kutchukian, P. S., Bowman, B. R., Karplus, M., &; Verdine, G. L. (2012). Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem, 287(30), 24916-24928. doi: 10.1074/jbc.M111.316497
[6] Kuznetsova, A. A., Kuznetsov, N. A., Ishchenko, A. A., Saparbaev, M. K., &; Fedorova, O. S. (2013). Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Biochim Biophys Acta, 1840(1), 387-395. doi: 10.1016/j.bbagen.2013.09.035
[7] Su, Y. H., Lee, Y. L., Chen, S. F., Lee, Y. P., Hsieh, Y. H., Tsai, J. H., . . . Huang, W. (2013). Essential role of beta-human 8-oxoguanine DNA glycosylase 1 in mitochondrial oxidative DNA repair. Environ Mol Mutagen, 54(1), 54-64. doi: 10.1002/em.21742
[8] Hashiguchi, K., Stuart, J. A., de Souza-Pinto, N. C., &; Bohr, V. A. (2004). The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res, 32(18), 5596-5608. doi: 10.1093/nar/gkh863
[9] Wei, B., Zhou, Y., Xu, Z., Xi, B., Cheng, H., Ruan, J., . . . Lu, P. (2011). The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis. PLoS One, 6(11), e27545. doi: 10.1371/journal.pone.0027545
[10] Weiss, J. M., Goode, E. L., Ladiges, W. C., &; Ulrich, C. M. (2005). Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog, 42(3), 127-141. doi: 10.1002/mc.20067
[11] Hill, J. W., &; Evans, M. K. (2006). Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res, 34(5), 1620-1632. doi: 10.1093/nar/gkl060
[12] Bravard, A., Vacher, M., Moritz, E., Vaslin, L., Hall, J., Epe, B., &; Radicella, J. P. (2009). Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res, 69(8), 3642-3649. doi: 10.1158/0008-5472.CAN-08-3943
[11] Guo, Z., &; Eisenberg, D. (2007). The mechanism of the amyloidogenic onversion of T7 endonuclease I. J Biol Chem, 282(20), 14968-14974. doi: 10.1074/jbc.M609514200
[12] M. J. BENNETT, M. P. SCHLUNEGGER and D. EISENBERG. (1995). 3D Domain swapping: A mechanism for oligomer assembly. Protein Sci. 1995 4: 2455-2468.
[13] Gotte, G., Mahmoud Helmy, A., Ercole, C., Spadaccini, R., Laurents, D. V., Donadelli, M., &; Picone, D. (2012). Double domain swapping in bovine seminal RNase: formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities. PLoS One, 7(10), e46804. doi: 10.1371/journal.pone.0046804
[14] Liu, Y., &; Eisenberg, D. (2002). 3D domain swapping: as domains continue to swap. Protein Sci, 11(6), 1285-1299. doi: 10.1110/ps.0201402
[15] Apostol, M. I., Wiltzius, J. J., Sawaya, M. R., Cascio, D., &; Eisenberg, D. (2011). Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry, 50(13), 2456-2463. doi: 10.1021/bi101803k
[16] Liu, C., Sawaya, M. R., &; Eisenberg, D. (2011). beta(2)-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol, 18(1), 49-55. doi: 10.1038/nsmb.1948
[17] Man, P., Montagner, C., Vitrac, H., Kavan, D., Pichard, S., Gillet, D., Forge, V. (2011). Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J Mol Biol, 414(1), 123-134. doi: 10.1016/j.jmb.2011.09.042
[18] Merlino, A., Picone, D., Ercole, C., Balsamo, A., &; Sica, F. (2012). Chain termini cross-talk in the swapping process of bovine pancreatic ribonuclease. Biochimie, 94(5), 1108-1118. doi: 10.1016/j.biochi.2012.01.010
[19] Park, C. K., Joshi, H. K., Agrawal, A., Ghare, M. I., Little, E. J., Dunten, P. W., Horton, N. C. (2010). Domain swapping in allosteric modulation of DNA specificity. PLoS Biol, 8(12), e1000554. doi: 10.1371/journal.pbio.1000554
[20] Sambashivan, S., Liu, Y., Sawaya, M. R., Gingery, M., &; Eisenberg, D. (2005). Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature, 437(7056), 266-269. doi: 10.1038/nature03916
[21] Wahlbom, M., Wang, X., Lindstrom, V., Carlemalm, E., Jaskolski, M., &; Grubb, A. (2007). Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem, 282(25), 18318-18326. doi: 10.1074/jbc.M611368200
[22] Wolff, C., Wattiez, R., Ruysschaert, J. M., &; Cabiaux, V. (2004). Characterization of diphtheria toxin's catalytic domain interaction with lipid membranes. Biochim Biophys Acta, 1661(2), 166-177. doi: 10.1016/j.bbamem.2004.01.001
[23] Ding, F., Prutzman, K. C., Campbell, S. L., &; Dokholyan, N. V. (2006). Topological determinants of protein domain swapping. Structure, 14(1), 5-14. doi: 10.1016/j.str.2005.09.008
[24] Balog, E. R., Saetern, O. C., Finch, W., Hoeft, C. O., Thai, V., Harvey, S. L., . . . Rubin, S. M. (2011). The structure of a monomeric mutant Cks protein reveals multiple functions for a conserved hinge-region proline. J Mol Biol, 411(3), 520-528. doi: 10.1016/j.jmb.2011.05.045
[25] Picone, D., Di Fiore, A., Ercole, C., Franzese, M., Sica, F., Tomaselli, S., &; Mazzarella, L. (2005). The role of the hinge loop in domain swapping. The special case of bovine seminal ribonuclease. J Biol Chem, 280(14), 13771-13778. doi: 10.1074/jbc.M413157200
[26] Miller, K. H., Karr, J. R., &; Marqusee, S. (2010). A hinge region cis-proline in ribonuclease A acts as a conformational gatekeeper for C-terminal domain swapping. J Mol Biol, 400(3), 567-578. doi: 10.1016/j.jmb.2010.05.017
[27] Khader Shameer, Ganesan Pugalenthi, Krishna Kumar Kandaswamy and Ramanathan Sowdhamini (2011). 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach. Protein Pept Lett. 18(10):1010-20.
[28] 3D-Jigsaw webserver http://bmm.cancerresearchuk.org/~3djigsaw/
[29] Sang J. Chung1, Gregory L. Verdine1 (2004). Structures of End Products Resulting from Lesion Processing by a DNA Glycosylase/Lyase. Chemistry &; Biology, Vol. 11, 1643–1649.
[30] Magnar BjùraÊs1, Erling Seeberg1, Luisa Luna1, Laurence H. Pearl and Tracey E. Barrett. Reciprocal ``Flipping'' Underlies SubstrateRecognition and Catalytic Activation by the Human 8-Oxo-guanine DNA Glycosylase. J. Mol. Biol. (2002) 317, 171-177.
[31] Pymol http://www.pymol.org/
[32] 利用分子動力學模擬CPA修飾之白胺酸腦啡與水溶液中之藥效活性 研究生:葉哲嘉/ 國立成功大學 工程學系研究所
[33] Sue, S. C., Lee, W. T., Tien, S. C., Lee, S. C., Yu, J. G., Wu, W. J., . . . Huang, T. H. (2007). PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol, 367(2), 456-472. doi: 10.1016/j.jmb.2007.01.010
[34] Sundaramoorthy, M., Meiyappan, M., Todd, P., &; Hudson, B. G. (2002). Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem, 277(34), 31142-31153. doi: 10.1074/jbc.M201740200
[35] Lu, J., &; Holmgren, A. (2013). The thioredoxin antioxidant system. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2013.07.036
[37] Lee, C. F., Paull, T. T., &; Person, M. D. (2013). Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM. J Proteome Res, 12(10), 4302-4315. doi: 10.1021/pr400201d
[38] Mieyal, J. J., &; Chock, P. B. (2012). Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Antioxid Redox Signal, 16(6), 471-475. doi: 10.1089/ars.2011.4454
[39] Abreu, C. M., Kumar, R., Hamilton, D., Dawdy, A. W., Creavin, K., Eivers, Lowndes, N. F. (2013). Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1. PLoS Genet, 9(4), e1003310. doi: 10.1371/journal.pgen.1003310
[40] Park, M. J., Park, J. H., Hahm, S. H., Ko, S. I., Lee, Y. R., Chung, J. H., . . . Han, Y. S. (2009). Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. DNA Repair (Amst), 8(10), 1190-1200. doi: 10.1016/j.dnarep.2009.06.004
[41] Sohn, S. Y., &; Cho, Y. (2009). Crystal structure of the human rad9-hus1-rad1 clamp. J Mol Biol, 390(3), 490-502. doi: 10.1016/j.jmb.2009.05.028
[42] Chu, C. H., Lo, W. C., Wang, H. W., Hsu, Y. C., Hwang, J. K., Lyu, P. C., Tang, C. Y. (2010). Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques. PLoS One, 5(10), e13361. doi: 10.1371/journal.pone.0013361
[43] Prashant Shingate, R. Sowdhamini. (2012). Analysis of Domain-Swapped Oligomers Reveals Local Sequence Preferences and Structural Imprints at the Linker Regions and Swapped Interfaces. PLoS ONE 7(7): e39305. doi:10.1371/journal.pone.0039305
[45] SRTING 9.05 http://string-db.org/newstr
|