跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許琳岡
研究生(外文):Hsu, Ling-Kang
論文名稱:人類修補酵素hOGG1單一核甘酸突變多樣性與蛋白質立體域交換之探討
論文名稱(外文):The Single Nucleotide Polymorphism of hOGG1Ser326Cys and 3D Domain Swapping
指導教授:羅惟正
指導教授(外文):Lo, Wei-Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物資訊及系統生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:49
中文關鍵詞:單一核苷酸突變多樣性
外文關鍵詞:hOGG1 S326Cys3D domain swappingGROMACS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類在日常生活中常常因曝露在化學物質或紫外光下造成體內的氧化壓力(Reactive oxygen species)增加,而其中一種的氧化壓力來源是7,8-dihydro-8-oxodeoxyguanine (8-oxodG),它可以欺騙A base跟它配對而造成突變。在人體內,專門移除這8-oxodG的酵素是一種糖苷酶:hOGG1,這酵素是base excision repair中的參與酵素之一,它可以移除8-oxodG,使受損的DNA恢復正常。

在酵素基因hogg1上有許多單一核甘酸突變多樣性(single nucleotide polymorphism, SNP),其中一個在exon7上1245的位置,在大部分的人們都是呈現C base,而有一部分的人們是呈現G base,特別是亞洲人攜帶此SNP的人群比西方人多。因為這個SNP的差異,造成hOGG1移除8-oxodG的能力較低。
攜帶此SNP的基因產物在蛋白質C端上326的位置是cysteine (C),而正常的hOGG1是serine (S)。許多文獻指出,hOGG1的C端能驅使受損DNA進入active site,而此SNP的cysteine取代原本正常的serine,造成此酵素的功能降低。另外,也有別的文獻指出hOGG1 S326C type會從單體變成雙體形式。

3D domain swapping是一種相同的蛋白質群彼此交換相同的區域而從單體形式轉換成雙體甚至是oligomer的特殊蛋白質現象,我們推敲可能的原因是326位置上的cysteine本身容易受氧化影響而跟同樣在326位置上的cysteine產生雙硫鍵,使其從單體形式變雙體形式(3D domain swapping)進而造成受損的DNA不易進入active site。

因為hOGG1的C端不易解出結晶結構,所以目前也無法得知此機致是如何運作。我們利用GROMACS這套分子動力模擬軟體去推敲此機致是如何運作。雖然我們無法利用GROMACS得知是否會產生雙硫鍵,但是我們可以根據模擬出來的結果解釋C端在hOGG1上所扮演的角色,並與之前的文獻資料相呼應。

我們的研究結果或許無法得知S326C hOGG1是不是因為3D domain swapping而造成差異,但是據我們所知,我們是第一個利用GROMACS模擬hOGG1 C端的人,我們希望可以藉此論文,協助人們研究此議題。

We are exposed to reactive oxygen species (ROS) every day. A common example of ROS is 7,8-dihydro-8-oxodeoxyguanine (8-OxodG), which can pair with an adenine base and result in mutation. In the human body, a glycosylase known as hOGG1 functions as removing the 8-oxodG in a base excision repair process that make damaged DNA regions recover normal functions.
There are many single nucleotide polymorphisms (SNP) on gene hogg1; for instance, a SNP is at the position 1245 of exon 7. The wild type hogg1 possesses a cytosine (C) base at this position but for some people, particularly Asian people, a guanine (G) base substitutes the C base. As a result, on the amino acid sequences, the product of the wild type hogg1 gene, i.e., the hOGG1 protein, possesses a serine at position 326, whereas the above-mentioned SNP mutant type possesses a cysteine at this position (that is, a S326C mutant). Some literatures proposed that the carboxyl-terminus of hOGG1 can force damaged DNA into the functional pocket of hOGG1 and the conformation of the S326C mutant is dimeric . The cysteine on position 326 lets the enzymatic activity reduced indirectly.
Three-dimensional (3D) domain swapping is a phenomenon that molecules of a protein exchanges identical domains with one another and form domain-swapped oligomers, inclusive of dimers. The cysteine on position 326 of the S326C mutant is prone to be oxidized when exposed to ROS. We proposed that the S326C mutant can form 3D domain-swapped dimer because of a disulfide bond linking the Cys326 residues from two S326C molecules (Cys326-Cys326).
Because of the high flexibility, the carboxyl-terminal structure of hOGG1 has not been determined yet. In this study, we used GROMACS, a molecular dynamics simulation software package, to simulate the carboxyl-terminal structure of hOGG1 and tried to determine whether the S326C is a case of 3D domain swapping. Although so far we are not able to make solid conclusion about whether the S326C type from dimers via 3D domain swapping, we are able to explain the function of C-terminus on hOGG1.

中文摘要………………………………………………………………………………i
ABSTRACT…………………………………………………………………………..ii
致謝...…………………………………………………………………………………iv
Contents………………………………………………………………………………v
List of Tables………………………………………………………………………..vii
List of Figures ………………………………………………………………..……..vii
I. INTRODUCTION
1.1 Reactive oxygen species (ROS)…………………………………………...1
1.1.1 7,8-dihydro-8-oxodeoxyguanine(8-OxodG) and it’s mutagenesis….….1
1.2 The human 8-oxoguanine-DNA glycosylase(hOGG1)……………………....4
1.2.1 hOGG1…………………………………………………………………….4
1.2.2 The importance of the single nucleotide polymorphism (SNP) Ser326Cys
on hOGG1……………………………………………………………...…4
1.3 Three-dimensional domain swapping………………………………………..6
1.3.1 Introduction……………………………………………………………….6
1.3.2 Common terms related with 3D domain swapping………………………..7
1.4 Motivation…………………………………………………………………….10
1.4.1 Literature Review I………………………………………………………..10
1.4.2 Literature Review II……………………………………………………….10
1.4.3 3DSwap-pred: A 3D domain swapping prediction web server…………... 11
1.3 Research goal…………………………………………………………………12
II. Materials and Methods………………………………………………………13
2.1 PDB files from the protein data bank…………………………………………13
2.2 3D-Jigsaw………………………………………………………………………15
2.3 Pymol…………………………………………………………………………...15
2.4 GROMACS 4.6.3……………………………………………………………….15
III Results and Discussions
3.1 Structural modeling with 3D-Jigsaw………………………………………..21
3.1.1 Construction of the structural models of hOGG1………………………....21
3.1.2 The role of C-terminus from 3D-Jigsaw……………………………………23
3.1.3 The Hinge Loop……………………………………………………………..25
3.2 MD simulation with GROMACS……………………………….……………...26
3.2.1 The quality of molecular dynamic simulations……………………………..26
3.2.2 The flexibility of wild type and S326C……………………………………….29
3.2.3 The flexibility of Hinge Loop…………………………………………….…..31
3.2.4 The radius of gyration………………………………………………………..33
3.2.5 On the proposed disulfide bond of Cys326…………………………………..35
3.2.6 Experiments regarding the disulfide bonds of S326C………………………38
IV Conclusion……………………………………………………………………… 40
V. Future Works…………………………………………………………………….42


[1] Kershaw RM, Hodges NJ. (2012). Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis. 27:501-10.

[2] Boiteux S, Radicella JP. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Archives of biochemistry and biophysics. 377:1-8.

[3] Chung, S. J., &; Verdine, G. L. (2004). Structures of end products resulting from lesion processing by a DNA glycosylase/lyase. Chem Biol, 11(12), 1643-1649. doi: 10.1016/j.chembiol.2004.09.014

[4] Klungland, A., &; Bjelland, S. (2007). Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst), 6(4), 481-488. doi: 10.1016/j.dnarep.2006.10.012

[5] Crenshaw, C. M., Nam, K., Oo, K., Kutchukian, P. S., Bowman, B. R., Karplus, M., &; Verdine, G. L. (2012). Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem, 287(30), 24916-24928. doi: 10.1074/jbc.M111.316497

[6] Kuznetsova, A. A., Kuznetsov, N. A., Ishchenko, A. A., Saparbaev, M. K., &; Fedorova, O. S. (2013). Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Biochim Biophys Acta, 1840(1), 387-395. doi: 10.1016/j.bbagen.2013.09.035

[7] Su, Y. H., Lee, Y. L., Chen, S. F., Lee, Y. P., Hsieh, Y. H., Tsai, J. H., . . . Huang, W. (2013). Essential role of beta-human 8-oxoguanine DNA glycosylase 1 in mitochondrial oxidative DNA repair. Environ Mol Mutagen, 54(1), 54-64. doi: 10.1002/em.21742

[8] Hashiguchi, K., Stuart, J. A., de Souza-Pinto, N. C., &; Bohr, V. A. (2004). The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res, 32(18), 5596-5608. doi: 10.1093/nar/gkh863

[9] Wei, B., Zhou, Y., Xu, Z., Xi, B., Cheng, H., Ruan, J., . . . Lu, P. (2011). The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis. PLoS One, 6(11), e27545. doi: 10.1371/journal.pone.0027545

[10] Weiss, J. M., Goode, E. L., Ladiges, W. C., &; Ulrich, C. M. (2005). Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog, 42(3), 127-141. doi: 10.1002/mc.20067

[11] Hill, J. W., &; Evans, M. K. (2006). Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res, 34(5), 1620-1632. doi: 10.1093/nar/gkl060

[12] Bravard, A., Vacher, M., Moritz, E., Vaslin, L., Hall, J., Epe, B., &; Radicella, J. P. (2009). Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res, 69(8), 3642-3649. doi: 10.1158/0008-5472.CAN-08-3943

[11] Guo, Z., &; Eisenberg, D. (2007). The mechanism of the amyloidogenic onversion of T7 endonuclease I. J Biol Chem, 282(20), 14968-14974. doi: 10.1074/jbc.M609514200

[12] M. J. BENNETT, M. P. SCHLUNEGGER and D. EISENBERG. (1995). 3D Domain swapping: A mechanism for oligomer assembly. Protein Sci. 1995 4: 2455-2468.

[13] Gotte, G., Mahmoud Helmy, A., Ercole, C., Spadaccini, R., Laurents, D. V., Donadelli, M., &; Picone, D. (2012). Double domain swapping in bovine seminal RNase: formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities. PLoS One, 7(10), e46804. doi: 10.1371/journal.pone.0046804

[14] Liu, Y., &; Eisenberg, D. (2002). 3D domain swapping: as domains continue to swap. Protein Sci, 11(6), 1285-1299. doi: 10.1110/ps.0201402

[15] Apostol, M. I., Wiltzius, J. J., Sawaya, M. R., Cascio, D., &; Eisenberg, D. (2011). Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry, 50(13), 2456-2463. doi: 10.1021/bi101803k

[16] Liu, C., Sawaya, M. R., &; Eisenberg, D. (2011). beta(2)-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol, 18(1), 49-55. doi: 10.1038/nsmb.1948

[17] Man, P., Montagner, C., Vitrac, H., Kavan, D., Pichard, S., Gillet, D., Forge, V. (2011). Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J Mol Biol, 414(1), 123-134. doi: 10.1016/j.jmb.2011.09.042

[18] Merlino, A., Picone, D., Ercole, C., Balsamo, A., &; Sica, F. (2012). Chain termini cross-talk in the swapping process of bovine pancreatic ribonuclease. Biochimie, 94(5), 1108-1118. doi: 10.1016/j.biochi.2012.01.010

[19] Park, C. K., Joshi, H. K., Agrawal, A., Ghare, M. I., Little, E. J., Dunten, P. W., Horton, N. C. (2010). Domain swapping in allosteric modulation of DNA specificity. PLoS Biol, 8(12), e1000554. doi: 10.1371/journal.pbio.1000554

[20] Sambashivan, S., Liu, Y., Sawaya, M. R., Gingery, M., &; Eisenberg, D. (2005). Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature, 437(7056), 266-269. doi: 10.1038/nature03916

[21] Wahlbom, M., Wang, X., Lindstrom, V., Carlemalm, E., Jaskolski, M., &; Grubb, A. (2007). Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem, 282(25), 18318-18326. doi: 10.1074/jbc.M611368200

[22] Wolff, C., Wattiez, R., Ruysschaert, J. M., &; Cabiaux, V. (2004). Characterization of diphtheria toxin's catalytic domain interaction with lipid membranes. Biochim Biophys Acta, 1661(2), 166-177. doi: 10.1016/j.bbamem.2004.01.001

[23] Ding, F., Prutzman, K. C., Campbell, S. L., &; Dokholyan, N. V. (2006). Topological determinants of protein domain swapping. Structure, 14(1), 5-14. doi: 10.1016/j.str.2005.09.008

[24] Balog, E. R., Saetern, O. C., Finch, W., Hoeft, C. O., Thai, V., Harvey, S. L., . . . Rubin, S. M. (2011). The structure of a monomeric mutant Cks protein reveals multiple functions for a conserved hinge-region proline. J Mol Biol, 411(3), 520-528. doi: 10.1016/j.jmb.2011.05.045

[25] Picone, D., Di Fiore, A., Ercole, C., Franzese, M., Sica, F., Tomaselli, S., &; Mazzarella, L. (2005). The role of the hinge loop in domain swapping. The special case of bovine seminal ribonuclease. J Biol Chem, 280(14), 13771-13778. doi: 10.1074/jbc.M413157200

[26] Miller, K. H., Karr, J. R., &; Marqusee, S. (2010). A hinge region cis-proline in ribonuclease A acts as a conformational gatekeeper for C-terminal domain swapping. J Mol Biol, 400(3), 567-578. doi: 10.1016/j.jmb.2010.05.017

[27] Khader Shameer, Ganesan Pugalenthi, Krishna Kumar Kandaswamy and Ramanathan Sowdhamini (2011). 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach. Protein Pept Lett. 18(10):1010-20.

[28] 3D-Jigsaw webserver http://bmm.cancerresearchuk.org/~3djigsaw/

[29] Sang J. Chung1, Gregory L. Verdine1 (2004). Structures of End Products Resulting from Lesion Processing by a DNA Glycosylase/Lyase. Chemistry &; Biology, Vol. 11, 1643–1649.

[30] Magnar BjùraÊs1, Erling Seeberg1, Luisa Luna1, Laurence H. Pearl and Tracey E. Barrett. Reciprocal ``Flipping'' Underlies SubstrateRecognition and Catalytic Activation by the Human 8-Oxo-guanine DNA Glycosylase. J. Mol. Biol. (2002) 317, 171-177.

[31] Pymol http://www.pymol.org/

[32] 利用分子動力學模擬CPA修飾之白胺酸腦啡與水溶液中之藥效活性
研究生:葉哲嘉/ 國立成功大學 工程學系研究所

[33] Sue, S. C., Lee, W. T., Tien, S. C., Lee, S. C., Yu, J. G., Wu, W. J., . . . Huang, T. H. (2007). PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol, 367(2), 456-472. doi: 10.1016/j.jmb.2007.01.010

[34] Sundaramoorthy, M., Meiyappan, M., Todd, P., &; Hudson, B. G. (2002). Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem, 277(34), 31142-31153. doi: 10.1074/jbc.M201740200

[35] Lu, J., &; Holmgren, A. (2013). The thioredoxin antioxidant system. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2013.07.036

[37] Lee, C. F., Paull, T. T., &; Person, M. D. (2013). Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM. J Proteome Res, 12(10), 4302-4315. doi: 10.1021/pr400201d

[38] Mieyal, J. J., &; Chock, P. B. (2012). Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Antioxid Redox Signal, 16(6), 471-475. doi: 10.1089/ars.2011.4454

[39] Abreu, C. M., Kumar, R., Hamilton, D., Dawdy, A. W., Creavin, K., Eivers, Lowndes, N. F. (2013). Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1. PLoS Genet, 9(4), e1003310. doi: 10.1371/journal.pgen.1003310

[40] Park, M. J., Park, J. H., Hahm, S. H., Ko, S. I., Lee, Y. R., Chung, J. H., . . . Han, Y. S. (2009). Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. DNA Repair (Amst), 8(10), 1190-1200. doi: 10.1016/j.dnarep.2009.06.004

[41] Sohn, S. Y., &; Cho, Y. (2009). Crystal structure of the human rad9-hus1-rad1 clamp. J Mol Biol, 390(3), 490-502. doi: 10.1016/j.jmb.2009.05.028

[42] Chu, C. H., Lo, W. C., Wang, H. W., Hsu, Y. C., Hwang, J. K., Lyu, P. C., Tang, C. Y. (2010). Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques. PLoS One, 5(10), e13361. doi: 10.1371/journal.pone.0013361

[43] Prashant Shingate, R. Sowdhamini. (2012). Analysis of Domain-Swapped Oligomers Reveals Local Sequence Preferences and Structural Imprints at the
Linker Regions and Swapped Interfaces. PLoS ONE 7(7): e39305. doi:10.1371/journal.pone.0039305

[45] SRTING 9.05 http://string-db.org/newstr

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top