|
Chapter 1
[1] J. Pankove, et al., "Luminescence of insulating Be-doped and Li-doped GaN," J. Lumines, vol. 8, pp. 89, 1973. [2] A. Romanov, et al., "Strain-induced polarization in wurtzite III-nitride semipolar layers," J. Appl. Phys., vol. 100, pp. 023522, 2006. [3] H. Masui, et al., "Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges," IEEE Trans. Elec. Dev., vol. 57, pp. 88, 2010. [4] P. Waltereit, et al., "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865, 2000. [5] D. Queren, et al., "500 nm electrically driven InGaN based laser diodes," Appl. Phys. Lett., vol. 94, pp. 081119, 2009. [6] S. Nakamura, "Current status of GaN-based solid-state lighting," MRS bulletin, vol. 34, pp. 101, 2009. [7] M. H. Crawford, "LEDs for solid-state lighting: performance challenges and recent advances," IEEE J Quan. Elec, vol. 15, pp. 1028, 2009. [8] T. Mukai, M. Yamada, and S. Nakamura, "Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes," Jpn. J. Appl. Phys., vol. 38, pp. 3976, 1999. [9] S. C. Ling, et al., "Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes," Appl. Phys. Lett., vol. 96, pp. 231101, 2010. [10] S. P. Chang, et al., "Low droop nonpolar GaN/InGaN light emitting diode grown on m-plane GaN substrate," J. Elec. Soci., vol. 157, pp. H501, 2010. [11] S. Li and A. Waag, "GaN based nanorods for solid state lighting," J. Appl. Phys., vol. 111, pp. 071101, 2012. [12] T. W. Yeh, et al., "InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays," Nano lett., vol. 12, pp. 3257, 2012. [13] Q. Li, et al., "Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays," Opt. express, vol. 19, pp. 25528 2011. [14] R. Koester, et al., "M-plane core–shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices," Nano lett., vol. 11, pp. 4839, 2011. [15] S. Li, et al., "Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy," Appl. Phys. Lett., vol. 101, pp. 032103, 2012. [16] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284, 2011. [17] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. phys. lett., vol. 96, pp. 231104, 2010. [18] C. H. Liao, et al., "Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays," J. Appl. Phys., vol. 113, pp. 054315, 2013. [19] Y. H. Ra, et al., "Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m-and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition," J. Mater. Chem. C, vol. 2, pp. 2692, 2014. [20] R. Sharma, et al., "Demonstration of a semipolar (10 1 3) InGaN/GaN green light emitting diode," Appl. Phys. Lett., vol. 87, pp. 231110, 2005. [21] Y. S. Chen, et al., "Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth," J. Appl. Phys., vol. 106, pp. 023521, 2009. [22] H. Y. Ryu, "Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures," Nanoscale research lett., vol. 9, pp. 1, 2014. [23] M. Y. Ke, et al., "Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays," IEEE J. Sel. Top. Quan. Elec. vol. 15, pp. 1242, 2009. [24] S. Noda and M. Fujita, "Light-emitting diodes: Photonic crystal efficiency boost," Nature photonics, vol. 3, pp. 129, 2009. [25] J. R. Chang, et al., "Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars," Appl. Phys. Lett., vol. 100, pp. 261103, 2012. [26] T. W. Yeh, et al., "Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets," Appl. Phys. Lett., vol. 100, pp. 033119, 2012. [27] Y. D. Lin, et al., "Characterization of blue-green m-plane InGaN light emitting diodes," Appl. Phys. Lett., vol. 94, pp. 261108, 2009. [28] K. C. Kim, et al., "Study of nonpolar m-plane InGaN∕ GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition," Appl. Phys. Lett., vol. 91, pp. 181120, 2007. [29] X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," J. Appl. Phys., vol. 90, pp. 4191, 2001. [30] G. Jacopin, et al., "Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells," Appl. Phys. Express, vol. 5, pp. 014101, 2012. [31] H. S. Chen, et al., "Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array," Opt. lett., vol. 38, pp. 3370, 2013. [32] F. Qian, et al., "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes," Nano lett., vol. 5, pp. 2287, 2005. [33] S. P. Chang, et al., "Electrically driven green, olivine, and amber color nanopyramid light emitting diodes," Opt. express, vol. 21, pp. 23030, 2013. [34] S. Albert, et al., "Selective area growth and characterization of InGaN nanocolumns for phosphor-free white light emission," J. Appl. Phys., vol. 113, pp. 114306, 2013.
Chapter 2 [1] S. Nakamura, et al., "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys. vol. 34, pp. L797, 1995. [2] S. Nakamura, et al., "InGaN multi‐quantum‐well structure laser diodes grown on MgAl2O4 substrates," Appl. phys. lett., vol. 68, pp. 2105, 1996. [3] S. Nakamura and G. Fasol, "The blue laser diode, 1997," Spring-Verlag, Heidelberg, for review, 1997. [4] C. Sartel, et al., "Low temperature homoepitaxy of GaN by LP-MOVPE using Dimethylhydrazine and nitrogen," Superlattices and Microstructures, vol. 40, pp. 476, 2006. [5] H. Sato, et al., "Preparation of GaN films on sapphire by metalorganic chemical vapor deposition using dimethylhydrazine as nitrogen source," Appl. phys. lett., vol. 68, pp. 3617, 1996. [6] F. Höhnsdorf, et al., "Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1, 1-dimethylhydrazine (UDMHy)," J. cryl. growth, vol. 195, pp. 391, 1998. [7] B. G. Yacobi and D. B. Holt, Cathodoluminescence microscopy of inorganic solids: Springer Us, 1990. [8] C. R. Brundle, C. A. Evans, and S. Wilson, Encyclopedia of materials characterization: surfaces, interfaces, thin films: Gulf Professional Publishing, 1992. [9] P. Misra, "Optical polarization anisotrop in nonpolar GaN thin films due to crystal symmetry and anisotropic strain," Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. [10] H. Y. Chen, et al., "Polarized photoluminescence from single GaN nanorods: effects of optical confinement," Opt. express, vol. 16, pp. 13465, 2008. [11] X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," J. Appl. Phy., vol. 90, pp. 4191, 2001. [12] H. Y. Ryu and J. I. Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. express, vol. 19, pp. 2886, 2011. [13] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284-3288, 2011.
Chapter 3 [1] C. H. Liao, et al., "Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod," Opt. express, vol. 20, pp. 15859, 2012. [2] A. Lundskog, et al., "Morphology control of hot-wall MOCVD selective area grown hexagonal GaN pyramids," Crys. Growth & Design, vol. 12, pp. 5491, 2012. [3] Q. Li and G. T. Wang, "Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires," App. Phys. Lett., vol. 97, pp. 181107, 2010. [4] S. Albert, et al., "Selective area growth and characterization of InGaN nanocolumns for phosphor-free white light emission," J. Appl. Phys., vol. 113, pp. 114306, 2013. [5] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. Phys. Lett., vol. 96, pp. 231104, 2010. [6] Y. H. Ra, et al., "Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition," J. Mater. Chem. C, vol. 2, pp. 2692, 2014.
Chapter 4 [1] C. Hums, et al., "Fabry-Perot effects in InGaN∕ GaN heterostructures on Si-substrate," J. Appl. Phys., vol. 101, pp. 033113, 2007. [2] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. Phys. lett., vol. 96, p. 231104, 2010. [3] P. Misra, "Optical polarization anisotrop in nonpolar GaN thin films due to crystal symmetry and anisotropic strain," Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. [4] H. Y. Chen, et al., "Polarized photoluminescence from single GaN nanorods: effects of optical confinement," Opt. express, vol. 16, pp. 13465, 2008. [5] Y. J. Lee, et al., "Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,", IEEE J. Sel. Top. Quan. Elec., vol. 15, pp. 1137, 2009.
Chapter 5 [1] Y. Zhao, et al., "Green semipolar (20bar 2bar 1) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth," Appl. Phys. Express, vol. 6, pp. 062102, 2013. [2] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284, 2011. [3] S. P. Chang, et al., "Electrically driven green, olivine, and amber color nanopyramid light emitting diodes," Opt. express, vol. 21, pp. 23030, 2013. [4] G. Jacopin, et al., "Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells," Appl. Phys. Express, vol. 5, pp. 014101, 2012. [5] F. Qian, et al., "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes," Nano lett., vol. 5, pp. 2287, 2005. [6] H. Masui, et al., "Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges," IEEE Trans. Elec. Dev., vol. 57, pp. 88, 2010. [7] Y. J. Hong, , et al., "Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes," J. Mater, Chem., vol. 19, pp. 941, 2009.
|