跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐偉棋
研究生(外文):Hsu, Wei-Chi
論文名稱:探討平頭式氮化銦鎵與氮化鎵多重量子井包覆奈米柱核殼結構綠光發光二極體之成長與光電特性
論文名稱(外文):Fabrication and Characteristics of Tip-Free Core-Shell InGaN/GaN Nanorod Green Light Emitting Diodes
指導教授:郭浩中郭浩中引用關係謝嘉民
指導教授(外文):Kuo, Hao-ChungShieh, Jia-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:78
中文關鍵詞:發光二極體奈米柱氮化鎵核殼結構綠光
外文關鍵詞:Light-emitting diodesnanorodsGaNcore-shellGreen color
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年幾來氮化鎵奈米柱型發光二極體引起世界各地廣大的研究興趣,鑒因於其結構可有效增加主動層面積、降低成長的缺陷密度、增加光萃取率以及提供半極化面或是非極化面的量子井成長以抑制量子侷限史塔克效應等優點。從近年來的相關發表中均指出三維成長的氮化鎵奈米柱通常具有多個面向的量子井成長方向,乃由於其不同面向的長速、銦融入率皆不同,使得不同面向量子井光電特性皆不同。而奈米柱結構上由於氮化鎵沿c軸方向成長的長速較快,進而使得奈米柱頂部易形成較尖銳的幾何結構,造成在外加電場下不均勻的電場分布以及電致發光波長隨注入電流產生嚴重的藍移現象等等,以上諸多問題皆會使得奈米柱發光二極體在光電特性上難以控制而限制其應用。
因此,本論文中我們提出一新穎的奈米柱發光二極體結構,於奈米柱的頂部加上一層氮化矽之鈍化層,預期使用這種新型的基板於成長時可抑制極化面與半極化面量子井的成長,進一步增加非極化面量子井的成長面積,抑制量子侷限效應並提升元件之發光效率。此外,較均勻的量子井厚度以及銦含量分布亦被實現於此結構成長之奈米柱發光二極體。在電激發光特性上,於奈米柱頂部的氮化矽介電質材料可做為一電流阻擋層,避免尖端結構形成電場的聚集,進而改善目前奈米柱發光二極體電激發光波長隨電流嚴重藍移之關鍵問題。於本篇研究中,我們成功的製備出一平頭式奈米柱發光二極體,並與文獻上的各式發光二極體結構做比較與討論,我們相信它將扮演未來奈米柱發光二極體發展之重要角色。


In recent years, c-axis-oriented gallium nitride (GaN) based nanorods light-emitting diodes (LEDs) have attracted intensive attention. The reason why GaN nanorod LEDs is so popular can be attributed to the following advantages. First, the area of active regions will increase, while they were grown on three-dimensional (3D) structure nanorods template. Second, the defect density of MQWs grown on nanorods template can be decreased. Third, light extraction performance is greatly enhanced. Fourth, the growth of non-polar and semi-polar multiple quantum well can decrease the polarization-induced effect. In the epitaxial process of the GaN materials in LEDs, the growth rate of multi quantum wells and the indium (In) composition are various in different growth orientations, causing inhomogeneous thickness of the active regions and anisotropic indium distributions in multi quantum wells (MQWs). Furthermore, while re-growing III-nitride materials on the nanorods template, the gradually accumulated materials have a tendency to form pointed tips on the top of each nanorods. This implies a non-uniform electric field distribution will occur on the topmost of nanorod LED. As a result, EL emission wavelength will have a giant blue shift as the injected current increases. These characteristics may make the emission wavelength of nanorod LED deviated from the original design and limit its applications.
To conquer the challenges, we propose a novel nanorod LED structure. In our newly designed nanorod LED, the top of nanorod is covered by a dielectric material nano-disk. During the nanorod LED growth, the passivation of dielectric nano-disk on the top can suppress the growth of polar and semi-polar MQWs, leading to a high proportion of non-polar active region. Therefore, the quantum confined stark effect in MQWs can be greatly reduced. Moreover, indium spatially distribution in MQWs may become uniform. On the other hand, with this dielectric material nano-disk, the electric field on the tip of nanorod LED is reduced substantially. Thus, the major of difficulty of the giant blue shift existing in the EL spectra can be avoided. In this work, we have successfully demonstrated that our tip-free core-shell nanorod LEDs indeed possess, the superior features as described above when compared with its conventional counterpart. It is believed that our study shown here will pave a key study for the advancement of high efficient LEDs with excellent performance.

CONTENTS
摘要.................................................i
Abstract............................................ii
誌謝.................................................iv
Contents.............................................v
List of Figures....................................vii



Chapter 1 Introduction
1.1 Development of Nitride-based Light-Emitting
Diodes...........................................1
1.2 Properties of Nitride-based Nanorod Light-Emitting
Diodes...........................................6
1.3 Motivation.......................................9
1.4 References......................................15

Chapter 2 Experimental Instrument
2.1 Metal-Organic Chemical Vapor Deposition (MOCVD)
System..........................................20
2.2 Photoluminescence (PL) Measurement System.......23
2.3 Finite Element Method (FEM) Simulation..........26
2.4 References......................................28

Chapter 3 Fabrication and Growth Properties of Tip-Free
and Tip-Shaped Nanorod Light-Emitting Diodes
3.1 Fabrication of Tip-Free and Tip-Shaped Nanorod
Arrays Template.................................31
3.2 Fabrication of Tip-Free and Tip-Shaped Nanorod
Light-Emitting Diodes...........................35
3.3 Morphology, Active Area of Tip-Free and Tip-Shaped
Nanorod Light-Emitting Diodes...................37
3.4 Summary.........................................45
3.5 References......................................46
Chapter 4 Optical Properties of Tip-Free and Tip-Shaped
Nanorod Light-Emitting Diodes
4.1 Optical Properties of Tip-Free and Tip-Shaped
Nanorod Light-Emitting Diodes...................48
4.2 Internal Electric Field and Optical Properties of
Tip-Free and Tip-Shaped Nanorod Light-Emitting
Diodes..........................................54
4.3 Summary.........................................62
4.4 References......................................63

Chapter 5 Electrical and Electroluminescence Properties
of Tip-Free Nanorod Green Light-Emitting-Diodes
5.1 Electroluminescence (EL) Properties of Tip-Free
Nanorod Green Light-Emitting Diodes.............65
5.2 Benchmark of Electroluminescence of Tip-Free Nanorod
Green Light-Emitting Diodes and Finite Element Method
(FEM)Simulation.................................68
5.3 Summary.........................................75
5.4 References......................................76

Chapter 6 Conclusions...............................77


Chapter 1

[1] J. Pankove, et al., "Luminescence of insulating Be-doped and Li-doped GaN," J. Lumines, vol. 8, pp. 89, 1973.
[2] A. Romanov, et al., "Strain-induced polarization in wurtzite III-nitride semipolar layers," J. Appl. Phys., vol. 100, pp. 023522, 2006.
[3] H. Masui, et al., "Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges," IEEE Trans. Elec. Dev., vol. 57, pp. 88, 2010.
[4] P. Waltereit, et al., "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865, 2000.
[5] D. Queren, et al., "500 nm electrically driven InGaN based laser diodes," Appl. Phys. Lett., vol. 94, pp. 081119, 2009.
[6] S. Nakamura, "Current status of GaN-based solid-state lighting," MRS bulletin, vol. 34, pp. 101, 2009.
[7] M. H. Crawford, "LEDs for solid-state lighting: performance challenges and recent advances," IEEE J Quan. Elec, vol. 15, pp. 1028, 2009.
[8] T. Mukai, M. Yamada, and S. Nakamura, "Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes," Jpn. J. Appl. Phys., vol. 38, pp. 3976, 1999.
[9] S. C. Ling, et al., "Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes," Appl. Phys. Lett., vol. 96, pp. 231101, 2010.
[10] S. P. Chang, et al., "Low droop nonpolar GaN/InGaN light emitting diode grown on m-plane GaN substrate," J. Elec. Soci., vol. 157, pp. H501, 2010.
[11] S. Li and A. Waag, "GaN based nanorods for solid state lighting," J. Appl. Phys., vol. 111, pp. 071101, 2012.
[12] T. W. Yeh, et al., "InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays," Nano lett., vol. 12, pp. 3257, 2012.
[13] Q. Li, et al., "Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays," Opt. express, vol. 19, pp. 25528 2011.
[14] R. Koester, et al., "M-plane core–shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices," Nano lett., vol. 11, pp. 4839, 2011.
[15] S. Li, et al., "Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy," Appl. Phys. Lett., vol. 101, pp. 032103, 2012.
[16] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284, 2011.
[17] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. phys. lett., vol. 96, pp. 231104, 2010.
[18] C. H. Liao, et al., "Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays," J. Appl. Phys., vol. 113, pp. 054315, 2013.
[19] Y. H. Ra, et al., "Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m-and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition," J. Mater. Chem. C, vol. 2, pp. 2692, 2014.
[20] R. Sharma, et al., "Demonstration of a semipolar (10 1 3) InGaN/GaN green light emitting diode," Appl. Phys. Lett., vol. 87, pp. 231110, 2005.
[21] Y. S. Chen, et al., "Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth," J. Appl. Phys., vol. 106, pp. 023521, 2009.
[22] H. Y. Ryu, "Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures," Nanoscale research lett., vol. 9, pp. 1, 2014.
[23] M. Y. Ke, et al., "Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays," IEEE J. Sel. Top. Quan. Elec. vol. 15, pp. 1242, 2009.
[24] S. Noda and M. Fujita, "Light-emitting diodes: Photonic crystal efficiency boost," Nature photonics, vol. 3, pp. 129, 2009.
[25] J. R. Chang, et al., "Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars," Appl. Phys. Lett., vol. 100, pp. 261103, 2012.
[26] T. W. Yeh, et al., "Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets," Appl. Phys. Lett., vol. 100, pp. 033119, 2012.
[27] Y. D. Lin, et al., "Characterization of blue-green m-plane InGaN light emitting diodes," Appl. Phys. Lett., vol. 94, pp. 261108, 2009.
[28] K. C. Kim, et al., "Study of nonpolar m-plane InGaN∕ GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition," Appl. Phys. Lett., vol. 91, pp. 181120, 2007.
[29] X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," J. Appl. Phys., vol. 90, pp. 4191, 2001.
[30] G. Jacopin, et al., "Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells," Appl. Phys. Express, vol. 5, pp. 014101, 2012.
[31] H. S. Chen, et al., "Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array," Opt. lett., vol. 38, pp. 3370, 2013.
[32] F. Qian, et al., "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes," Nano lett., vol. 5, pp. 2287, 2005.
[33] S. P. Chang, et al., "Electrically driven green, olivine, and amber color nanopyramid light emitting diodes," Opt. express, vol. 21, pp. 23030, 2013.
[34] S. Albert, et al., "Selective area growth and characterization of InGaN nanocolumns for phosphor-free white light emission," J. Appl. Phys., vol. 113, pp. 114306, 2013.


Chapter 2
[1] S. Nakamura, et al., "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys. vol. 34, pp. L797, 1995.
[2] S. Nakamura, et al., "InGaN multi‐quantum‐well structure laser diodes grown on MgAl2O4 substrates," Appl. phys. lett., vol. 68, pp. 2105, 1996.
[3] S. Nakamura and G. Fasol, "The blue laser diode, 1997," Spring-Verlag, Heidelberg, for review, 1997.
[4] C. Sartel, et al., "Low temperature homoepitaxy of GaN by LP-MOVPE using Dimethylhydrazine and nitrogen," Superlattices and Microstructures, vol. 40, pp. 476, 2006.
[5] H. Sato, et al., "Preparation of GaN films on sapphire by metalorganic chemical vapor deposition using dimethylhydrazine as nitrogen source," Appl. phys. lett., vol. 68, pp. 3617, 1996.
[6] F. Höhnsdorf, et al., "Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1, 1-dimethylhydrazine (UDMHy)," J. cryl. growth, vol. 195, pp. 391, 1998.
[7] B. G. Yacobi and D. B. Holt, Cathodoluminescence microscopy of inorganic solids: Springer Us, 1990.
[8] C. R. Brundle, C. A. Evans, and S. Wilson, Encyclopedia of materials characterization: surfaces, interfaces, thin films: Gulf Professional Publishing, 1992.
[9] P. Misra, "Optical polarization anisotrop in nonpolar GaN thin films due to crystal symmetry and anisotropic strain," Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006.
[10] H. Y. Chen, et al., "Polarized photoluminescence from single GaN nanorods: effects of optical confinement," Opt. express, vol. 16, pp. 13465, 2008.
[11] X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," J. Appl. Phy., vol. 90, pp. 4191, 2001.
[12] H. Y. Ryu and J. I. Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. express, vol. 19, pp. 2886, 2011.
[13] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284-3288, 2011.


Chapter 3
[1] C. H. Liao, et al., "Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod," Opt. express, vol. 20, pp. 15859, 2012.
[2] A. Lundskog, et al., "Morphology control of hot-wall MOCVD selective area grown hexagonal GaN pyramids," Crys. Growth & Design, vol. 12, pp. 5491, 2012.
[3] Q. Li and G. T. Wang, "Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires," App. Phys. Lett., vol. 97, pp. 181107, 2010.
[4] S. Albert, et al., "Selective area growth and characterization of InGaN nanocolumns for phosphor-free white light emission," J. Appl. Phys., vol. 113, pp. 114306, 2013.
[5] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. Phys. Lett., vol. 96, pp. 231104, 2010.
[6] Y. H. Ra, et al., "Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition," J. Mater. Chem. C, vol. 2, pp. 2692, 2014.


Chapter 4
[1] C. Hums, et al., "Fabry-Perot effects in InGaN∕ GaN heterostructures on Si-substrate," J. Appl. Phys., vol. 101, pp. 033113, 2007.
[2] H. Sekiguchi, K. Kishino, and A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. Phys. lett., vol. 96, p. 231104, 2010.
[3] P. Misra, "Optical polarization anisotrop in nonpolar GaN thin films due to crystal symmetry and anisotropic strain," Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006.
[4] H. Y. Chen, et al., "Polarized photoluminescence from single GaN nanorods: effects of optical confinement," Opt. express, vol. 16, pp. 13465, 2008.
[5] Y. J. Lee, et al., "Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,", IEEE J. Sel. Top. Quan. Elec., vol. 15, pp. 1137, 2009.


Chapter 5
[1] Y. Zhao, et al., "Green semipolar (20bar 2bar 1) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth," Appl. Phys. Express, vol. 6, pp. 062102, 2013.
[2] Y. J. Hong, et al., "Visible‐color‐tunable light‐emitting diodes," Adv. Mater., vol. 23, pp. 3284, 2011.
[3] S. P. Chang, et al., "Electrically driven green, olivine, and amber color nanopyramid light emitting diodes," Opt. express, vol. 21, pp. 23030, 2013.
[4] G. Jacopin, et al., "Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells," Appl. Phys. Express, vol. 5, pp. 014101, 2012.
[5] F. Qian, et al., "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes," Nano lett., vol. 5, pp. 2287, 2005.
[6] H. Masui, et al., "Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges," IEEE Trans. Elec. Dev., vol. 57, pp. 88, 2010.
[7] Y. J. Hong, , et al., "Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes," J. Mater, Chem., vol. 19, pp. 941, 2009.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊