跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉仁煌
研究生(外文):Liou, Ren-Huang
論文名稱:LTE 移動管理及其對通話控制影響之研究
論文名稱(外文):A Study on LTE Mobility Management and Its Impact on Call Control
指導教授:林一平林一平引用關係
指導教授(外文):Lin, Yi-Bing
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:98
中文關鍵詞:通話控制增強單一無線語音呼叫連續性位置更新長期演進技術移動管理呼叫全球行動通訊系統
外文關鍵詞:Call Controlenhanced Single Radio Voice Call Continuity (eSRVCC)Location UpdateLong Term Evolution (LTE)Mobility ManagementPagingUniversal Mobile Telecommunications System (UMTS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
為了提供行動寬頻服務,第三代行動通訊規格組織(3GPP)制訂了長期演進技術(LTE),其網路架構演進自全球行動通訊系統(UMTS)。LTE的移動管理(Mobility Management)機制追蹤使用者設備(User Equipment)的位置,以便於通知使用者來電。在通話建立之後,如果使用者在通話過程中移動,LTE通話控制(Call Control)機制負責維持通話的穩定性,避免通話在使用者移動過程中無故斷線。本研究探討LTE系統的移動管理效能以及其對通話控制之影響。

在LTE的網路架構中,細胞(Cells,基地台的無線電訊號覆蓋範圍)被分類成不同的追蹤區域(Tracking Areas),這些追蹤區域再被進一步被分類成追蹤區域清單(Tracking Area Lists)。移動管理的機制包含位置更新(Location Update)與呼叫(Paging)。當使用者設備離開目前的追蹤區域清單時,它會透過位置更新機制向網路端回報自己的新位置。當網路端嘗試對使用者設備建立連線時,網路端會透過呼叫機制要求追蹤區域清單中相對細胞的基地台去尋找使用者設備。本論文先分析 LTE 的移動管理效能。接著比較LTE移動管理效能與以移動次數為基礎(Movement-based)和以移動距離為基礎(Distance-based)的移動管理效能。研究結果顯示,在某些移動模式下,LTE的移動管理會有較好的表現。我們也提出一個LTE的動態呼叫方法,此方法根據使用者設備移動和呼叫的行為即時決定呼叫細胞的順序。研究結果顯示,動態呼叫方法可以有效降低呼叫訊息流量。

在通話控制方面,3GPP提出增強單一無線語音呼叫連續性(eSRVCC)機制,允許使用者設備在通話過程中,在LTE與UMTS領域中轉換。如果使用者設備在通話過程中頻繁地轉換,可能會產生大量的轉換訊息流量。針對此議題,本研究限制一通電話能轉換的最大次數,來降低轉換的訊息流量。我們研究eSRVCC在轉換次數限制下的效能。研究結果顯示,適當的轉換次數限制可以有效降低轉換訊息流量,並且維持較高的LTE使用率。

針對以上的研究題目,我們分別發展數學模型與模擬實驗,以精確分析各種交通流量或移動模式對效能的影響。本論文的研究成果可提供電信業者各項移動管理與通話控制之參數建議,以期提升LTE系統的效能。

3rd Generation Partnership Project (3GPP) proposed Long Term Evolution (LTE) which evolved from Universal Mobile Telecommunications System (UMTS) to support mobile broadband services. The LTE mobility management tracks the locations of the User Equipments (UEs) so that incoming calls can be delivered to the UEs. After a call is established, if the UE moves around the service area of the LTE network during the call, the call control technique such as enhanced Single Radio Voice Call Continuity (eSRVCC) is responsible to maintain the connectivity of the ongoing call. In this dissertation, we investigate the LTE mobility management and its impact on call control.

In the LTE mobility management architecture, the cells (the radio coverages of base stations) are grouped into the Tracking Areas (TAs), and the TAs are further grouped into the TA List (TAL). Mobility management procedures include location update and paging. The location update is executed when the UE leaves the current TAL. When the network attempts to connect to the UE (e.g., when an incoming call arrives), the network executes the paging procedure by sending the paging messages to the cells in the UE's TAL. In the dissertation, we first study the performance of the LTE mobility management. Then we compare the LTE mobility management scheme with two well-known mobility management schemes: the movement-based scheme and the distance-based schemes. Our study shows that under some traffic/mobility patterns, the LTE mobility management scheme outperforms the previously proposed schemes. We also propose a dynamic paging scheme that determines the paging sequence of cells in real time according to the UE movement and call behavior. Our study indicates that the dynamic paging scheme can effectively reduce the paging traffic.

For the call control, 3GPP proposed eSRVCC to support the access transfer between LTE and UMTS during a call. If the UE frequently moves back and forth between LTE and UMTS during a call, it may incur large access transfer traffic. To resolve this issue, the number of access transfers should be limited in an eSRVCC call (referred to as the transfer limit) to reduce the transfer traffic. We investigate the performance of eSRVCC with the transfer limit. Our study indicates that an appropriate transfer limit effectively reduces the access transfer traffic with good LTE utilization.

We also develop analytic and simulation models to study the impacts of different traffic/mobility patterns. Our study provides guidelines for the telecommunications operators to achieve higher system performance by selecting appropriate parameter values in LTE.

Chinese Abstract i
English Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables ix
List of Figures x
Notation xiii
1 Introduction 1
1.1 LTE and UMTS Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 LTE Mobility Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Enhanced Single Radio Voice Call Continuity . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 TAL-based Location Update and Paging 8
2.1 Three TAL-based Paging Schemes . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 TAL-based Location Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Analytic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Analysis of the Cu;T Performance . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Analysis of the Cp;s Performance . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Analysis of the Cd;s Performance . . . . . . . . . . . . . . . . . . . . 25
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Comparison of TAL-based, Movement-based, and Distance-based Mobility Management
Schemes 27
3.1 Location Update and Paging Schemes . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 TAL-based Location Update and CTT Paging . . . . . . . . . . . . . . 28
3.1.2 Movement-based and Distance-based Location Updates . . . . . . . . 30
3.1.3 Shortest-Distance-First (SDF) Paging . . . . . . . . . . . . . . . . . . 31
3.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Analysis of the Cu;s Performance . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Analysis of the Cp;s Performance . . . . . . . . . . . . . . . . . . . . 40
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 A Dynamic Paging Scheme for LTE Mobility Management 44
4.1 Dynamic Paging Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Analysis of the Cd;s Performance . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Analysis of the Cp;s Performance . . . . . . . . . . . . . . . . . . . . 57
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5 Performance Evaluation of LTE eSRVCC with Limited Access Transfers 59
5.1 eSRVCC Procedures and Access Transfer Algorithm . . . . . . . . . . . . . . 60
5.1.1 eSRVCC Call Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 eSRVCC Call Release . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3 eSRVCC Access Transfer . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.4 Access Transfer Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Analytic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Conclusions and Future Work 78
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Bibliography 81
A Simulation Model for LTE Mobility Management 87
B Simulation Model for LTE eSRVCC with Limited Access Transfers 91
Publication List 96

[1] Lin, Y.-B. and Chlamtac, I. Wireless and Mobile Network Architectures. John Wiley &;Sons, 2001.
[2] Lin, Y.-B. and Pang, A.-C. Wireless and Mobile All-IP Networks. John Wiley &; Sons,
2005.
[3] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service Description; Stage 2, Technical Specification 3GPP TS 23.060 version 12.0.0 (2013-03), 2013
[4] Lin, Y.-B., Liou, R.-H., Chen, Y.-K., and Wu, Z.-H. Automatic Event-Triggered Call Forwarding Mechanism for Mobile Phones, Wireless Communications and Mobile Computing, vol. 13, no. 12, pp. 1111-1119, 2011.
[5] Liou, R.-H., Lin, Y.-B., Chen, Y.-L., Hung, H.-N., Peng, N.-F., and Chang, M.-F. Deriving the Vehicle Speeds from a Mobile Telecommunications Network, IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1208-1217, 2013.
[6] Liou, R.-H., Lin, Y.-B., Chang, Y.-L., and Chang, M.-F. Deriving the Vehicle Speeds from Mobile Telecommunications Network, the 12th International Conference on ITS Telecommunications (ITST), November 2012.
[7] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access. Technical Specification 3G TS 23.401 version 10.0.0 (2010-06), 2010.
[8] Liou, R.-H., Lin, Y.-B., Sung, Y. C., Liu, P.-C., and Wietfeld, C. Performance of CS Fallback for Long Term Evolution Mobile Network, IEEE Transactions on Vehicular Technology, in press.
[9] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS); Stage 2, Technical Specification 3GPP TS 23.228 version 12.0.0 (2013-03), 2013.
[10] Ho, Y.-C., Lin, Y.-B., Liou, R.-H., and Tu, Y.-K. Implementing Value Added Applications in Next Generation Network, Future Internet, vol. 2, no. 3, pp. 282-294, 2010.
[11] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS) Service Continuity; Stage 2, Technical Specification 3GPP TS 23.237 version 12.0.0 (2013-03), 2013.
[12] Chen, Y.-K., Lin, Y.-B., and Liou, R.-H. Reducing International Call Costs for Roamer to Roamer Call, IEEE Transactions on Vehicular Technology, vol. 59, no. 8, pp. 4131-4134, 2010.
[13] Lin, Y.-B., Liou, R.-H., Chen, Y.-K., and Gan, C.-H. A Handset-based Solution for Reducing International Roaming Costs, IEEE Transactions on Wireless Communications, vol. 10, no. 5, pp. 1627-1635, 2011.
[14] Yang, S.-R. and Chen, W.-T. SIP multicast-based mobile quality-of-service support over heterogeneous IP multimedia subsystems, IEEE Transactions on Mobile Computing, vol. 7, no. 11, pp. 1297-1310, Nov 2008.
[15] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2. Technical Specification 3G TS 36.300 version 10.1.0 (2010-09), 2010.
[16] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for the Evolved Packet System (EPS); Stage 1, Technical Specification 3GPP TS 22.278 version 12.2.0 (2013-03), 2013.
[17] Lin, Y.-B. and Lin, Y.-C. WiMAX location update for vehicle applications, Mobile Networks and Applications, vol. 15, no. 1, pp. 148-159, February 2010.
[18] Yang, S.-R., Lin, Y.-C., and Lin, Y.-B. Performance of mobile telecommunications network with overlapping location area configuration, IEEE Transactions on Vehicular Technology, vol. 57, no. 2, pp. 1285-1292, March 2008.
[19] Akyildiz, I. F., Ho, J. S. M., and Lin, Y.-B. Movement-based location update and selective paging for PCS networks, IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 629-638, August 1996.
[20] Frank P. Kelly, Reversibility and Stochastic Networks. New York: Wiley, 1979.
[21] Chen, R., Yuan, S., and Zhu, J. A dynamic location management method of personal communication system, E-Tech 2004, pp. 1-9, July 2004.
[22] Lin, Y.-B. Per-user checkpointing for mobility database failure restoration, IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 189-194, March/April 2005.
[23] Yang, S.-R., Yan, S.-Y., and Hung, H.-N. Modeling UMTS power saving with bursty packet data traffic, IEEE Transactions on Mobile Computing, vol. 6, no. 12, pp. 1398-1409, December 2007.
[24] Huang, D.-W., Lin, P., and Gan, C.-H. Design and performance study for a mobility management mechanism (WMM) using location cache for wireless mesh networks, IEEE Transactions on Mobile Computing, vol. 7, no. 5, pp. 546-556, May 2008.
[25] Nasser, N., Hasswa, A., and Hassanein, H. Handoffs in fourth generation heterogeneous networks, IEEE Communications Magazine, vol. 44, no. 10, pp. 96-103, October 2006.
[26] Bar-Noy, A., Kessler, I., and Sidi, M. Mobile users: to update or not to update?, Wireless Networks, vol. 1, no. 2, pp. 175-185, 1995.
[27] Wong, V. W.-S. and Leung, V. C. M., Location management for next-generation personal communications networks, IEEE Network, vol. 14, no. 5, pp. 18-24, September/October 2000.
[28] Akyildiz, I. F., McNair, J., Ho, J. S. M., Uzunalio_glu, H., and Wang, W. Mobility management in next-generation wireless systems, Proceedings of the IEEE, vol. 87, no. 8, pp. 1347-1384, August 1999.
[29] Maxemchuk, N. Routing in the Manhattan street network, IEEE Transactions on Communications, vol. 35, no. 5, pp. 503-512, May 1987.
[30] Meyer, H., Trullols-Cruces, O., Hess, A., Hummel, K., Barcelo-Ordinas, J., Casetti, C., Karlsson, G. VANET mobility modeling challenged by feedback loops, 2011 the 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 95-102, June 2011.
[31] Kraaier, J., Killat, U. The influence of user mobility on vehicular internet access via IEEE 802.11 access points. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 335-342, June 2006.
[32] Tchakountio, F., Ramanathan, R. Tracking highly mobile endpoints. Proceedings of the 4th ACM international workshop on Wireless mobile multimedia, pp. 83-94, 2001.
[33] Moustafa, M., Habib, I., Naghshineh, M. Efficient radio resource control for Manhattan street environments. IEEE International Conference on Communications, vol.5, pp. 3377-3381, 2002.
[34] Lai, Y.-C., Lin, P., Cheng, S.-M. Performance modeling for application-level integration of heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2426-2434, June 2009.
[35] Sou, S.-I., Jeng, J.-Y., Lin, P. Improving session continuity through user mobility tracking for EPS inter-serving gateway handover. Wireless Communications and Mobile Computing, vol. 12, no. 12, pp. 1077–1090, August 2012.
[36] Pang, A.-C., Chen, Y.-K. A multicast mechanism for mobile multimedia messaging service. IEEE Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1891-1902, November 2004.
[37] Sung, Y.-C., Lin, Y.-B., Liou, R.-H., and Shieh, L.-F. NCTU-VT: A Freeware for Wireless VoIP Performance Measurement, Wireless Communications and Mobile Computing, vol. 12, no. 4, pp. 318-324, March 2012.
[38] Liou, R.-H., Ide, C., Dusza, B., Wietfeld, C., and Lin, Y.-B. QoE-Aware LTE Radio Link Control Parameters for Voice over IP in Vehicular Environments, IEEE 79th Vehicular Technology Conference (VTC-Spring), May 2014.
[39] Lin, P., Wu, S.-H., Chen, C.-M., and Liang, C.-F. Implementation and performance evaluation for a ubiquitous and unified multimedia messaging platform, Wireless Networks, vol. 15, no. 2, pp. 163-176, February 2009.
[40] ITU-T, Gateway Control Protocol: Version 3, Technical Report Recommendation H.248.1, ITU-T, 2005.
[41] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS) centralized services; Stage 2, Technical Specification 3GPP TS 23.292 version 12.1.0 (2013-03), 2013.
[42] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia (IM) Core Network (CN) subsystem IP Multimedia Subsystem (IMS) service continuity; Stage 3, Technical Specification 3GPP TS 24.237 version 12.0.0 (2013-03), 2013.
[43] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Single Radio Voice Call Continuity (SRVCC); Stage 2, Technical Specification 3GPP TS 23.216 version 11.8.0 (2013-03), 2013.
[44] Kleinrock, L. Queueing Systems, Vol. I, Theory, Wiley, 1976.
[45] Ross, S. M. Stochastic Processes. John Wiley &; Sons, Inc., 1996.
[46] Lin, Y.-B. Performance modeling for mobile telephone networks, IEEE Network, vol. 11, no. 6, pp. 63-68, November/December 1997.
[47] Hung, H.-N., Lee, P.-C., and Lin, Y.-B. Random Number Generation for Excess Life of Mobile User Residence Time, IEEE Transactions on Vehicular Technology, vol. 55, no. 3, pp. 1045-1050, May 2006.
[48] Lin, Y.-B., Lai, W.-R., and Chen, J.-J. Effects of Cache Mechanism on Wireless Data
Access, IEEE Transactions on Wireless Communications, vol. 2, no. 6, pp. 1247-1258,
November 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊