跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅凱俞
研究生(外文):Lo, Kai-Yu
論文名稱:一個3GHz具隨機取樣突波抑制技術之全數位式鎖相迴路
論文名稱(外文):A 3GHz All-Digital Phase-Locked Loop with Random-Sampling Spur Suppression Technique
指導教授:周世傑周世傑引用關係
指導教授(外文):Jou, Shyh-Jye
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:72
中文關鍵詞:鎖相迴路突波抑制多重相位
外文關鍵詞:phase-locked loopspur suppressionmulti-phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一個採用隨機取樣突波抑制技術的3GHz低突波、低抖動之全數位式鎖相迴路。由於輸入參考頻率以及Bang-Bang相位偵測器的非線性特性,會造成輸出頻譜上會有突波的發生,造成電磁干擾等等問題,因此我們提出了一個隨機取樣突波抑制技術,在不破壞整體迴路穩定性的情形下,去打散輸入參考頻率所造成的固定周期性行為。此外,由於此全數位鎖相迴路將應用於數位電路系統的時脈產生器上,低抖動也是我們設計此電路所必須達到的要求之一。為了達到低抖動以及低突波,整個迴路會由一個鎖定控制器(Locking controller)去控制,在不同的鎖定階段採取不同的迴路濾波器的參數,來達到比較好的效能。
此外,我們採用了一個差動式多相位且具有50%責任週期(Duty Cycle)的數位控制環式振盪器,並利用單一尺寸的變容器(unary varactor),來達到非常好的線性度。而多相位的輸出可供傳輸端及接收端平行取樣使用。最後整體晶片的設計皆利用台積電的標準元件資料庫(Standard Cell Library),因此可以簡短設計流程所需時間以及容易在不同製程上實現。
此論文中的晶片是使用台積電40nm 1P9M CMOS製程實現,經模擬結果顯示,在鎖定後所產生的輸出時脈信號為8個相位、頻率為3GHz的時脈信號,其週期抖動(period jitter)的均方根植為0.92ps (0.28%UI),峰對峰值為5.68ps (1.70%UI),參考頻率突波為-52.91dBc。整體晶片的核心電路面積分別為數位控制電路:0.0245mm2和數位控制震盪器: 0.0075mm2,在使用正常電壓0.9V下,功率消耗為12.18mW (4.06mW/GHz).

A 3GHz low spur and low jitter all-digital phase-locked loop with random-sampling spur suppression technique has been designed and implemented. Due to the periodic behavior caused by input reference frequency and limit cycle presented in the Bang-Bang phase detector, there are some unwanted spurious tones appear in the output spectrum. The spurious energy must be as low as possible to prevent some unwanted electromagnetic interference (EMI) problem. Thus, we propose a random-sampling spur suppression technique to solve this spurious problem without sacrificing the loop stability. Besides, jitter performance is a very important design consideration because of application for clock source in the digital circuit.
Governed by a locking controller to adjust the loop parameter during different locking stages, we can achieve better jitter and spur performance. Besides, we realize a multi-phase differential digitally-controlled ring-based oscillator. It can generate multi-phase clock signal with nearly 50% duty cycle for parallel sampling in the multiplexed transceiver. By utilizing unary varactor as the capacitive loading, the tuning curve shows good linearity. In this proposed all-digital phase-locked loop, all the logic cells are from standard cell library, so it can be called “fully all-digital phase-locked loop”. Therefore, the design can be easily ported to other CMOS technology process due to the cell-based nature.
This chip is implemented with the TSMC 40nm 1P9M CMOS general purpose process. The post-layout simulations show that the ADPLL can generate 8 multi-phase 3GHz clock signals. The RMS and peak-to-peak period jitter are 0.92ps (0.28%UI) and 5.68ps (1.70%UI), respectively. The reference spur level is -52.91dBc. The core area of digital controller circuit and digitally-controlled oscillator are 0.0245mm2 and 0.0075mm2, respectively. The power consumption is 12.18mW (4.06mW/GHz) when supply voltage is 0.9V.

Chapter 1 Introduction 1
1.1 Motivation 1
1.1.1 Introduction of ADPLL 1
1.1.2 Target Application and Spurious Problem 3
1.2 Thesis Organization 3
Chapter 2 Overview of ADPLL 5
2.1 Architecture of ADPLL 5
2.2 Analysis of Timing Jitter and Frequency Spectrum 7
2.2.1 Timing Jitter 7
2.2.2 Spectrum and Phase noise 11
2.2.3 Relationship between Jitter and Phase noise 14
2.3 State-of-the-Art of ADPLL 16
Chapter 3 Proposed Spur Suppression ADPLL 18
3.1 Block Diagram of the ADPLL 18
3.2 Frequency acquisition stage 21
3.3 Phase tracking stage and Dithering stage 24
3.4 Random-Sampling Technique for Spur-Reduction 30
3.4.1 Random Number Generator 40
3.4.2 Multi-Phase Generator 41
3.5 Digitally-Controlled Oscillator 43
3.5.1 DCO Resolution 44
3.5.2 Delay Cell 45
3.5.3 Dithering Technique 49
3.6 Digital Loop Filter &; Locking Controller 51
3.7 Summary 51
Chapter 4 Chip Design and Implementation 53
4.1 Digital Controller Implementation 53
4.2 DCO Implementation 54
4.3 Full-Chip Implementation of the Proposed ADPLL 61
Chapter 5 Conclusion and Future Works 67
5.1 Conclusion 67
5.2 Future Work 68
Reference 70

[1] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors,” IEEE J. Solid-State Circuits, vol.30, no.4, pp.412-422, Apr 1995.
[2] C.-C Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE J. Solid-State Circuits, vol.38, no.2, pp.347-351, Feb 2003.
[3] R. B. Staszewski, D. Leipold, C.-M. Hung, and P. T. Balsara, “TDC-based frequency synthesizer for wireless applications,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp.215-218, June 2004.
[4] R. B. Staszewski and P. T. Balsara, “Phase-domain all-digital phase-locked loop,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol.52, no.3, pp.159-163, March 2005.
[5] S. Safwat, M. Ghoneima, and Y. Ismail, “A design methodology for a low power bang-bang all digital PLL based on digital loop filter programmable coefficients,” International Conference on Energy Aware Computing, pp.1-4, Dec 2011.
[6] S. Safwat, A. Lotfy, M. Ghoneima, Y. Ismail, “A 5-10GHz low power bang-bang all digital PLL based on programmable digital loop filter,” IEEE International Symposium on Circuits and Systems, pp.1371-1374, May 2012.
[7] V. Kratyuk, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 0.6GHz to 2GHz Digital PLL with Wide Tracking Range,” IEEE Custom Integrated Circuits Conference, pp.305-308, Sept. 2007.
[8] Tektronix, “數位示波器的應用抖動(Jitter)測量,” http://www1.tek.com/zh-tw/download/docs/onlineseminar/SR2_02.pdf .
[9] Silicon Laboratories, “Estimating Period Jitter From Phase Noise,” https://www.silabs.com/Support%20Documents/TechnicalDocs/AN279.pdf .
[10] A. Aktas and M. Ismail, CMOS PLLs AND VCOs FOR 4G. Norwell, MA: Kluwer, 2004.
[11] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mW, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology,” IEEE J. Solid-State Circuits, vol.45, no.3, pp.578-586, March 2010.
[12] H.-J. Hsu and S.-Y. Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme,” IEEE Transactions on Very Large Scale Integration Systems, vol.19, no.1, pp.165-170, Jan. 2011.
[13] M. August, H.-J. Lee, M. Vandepas, and R. Parker,“A TDC-Less ADPLL with 200-to-3200MHz Range and 3mW Power Dissipation for Mobile SoC Clocking in 22nm CMOS,”IEEE International Solid-State Circuits Conference, pp. 246-248, Feb. 2012.
[14] J. Tierno, A. Rylyakov, and D. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol.43, no.1, pp.42-51, Jan. 2008.
[15] M.-C. Su and S.-J. Jou, “Digitally-controlled cell-based oscillator with multi-phase differential outputs,” IEEE 9th International Conference on ASIC, pp.610-613, Oct. 2011.
[16] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol.52, no.5, pp.233-237, May 2005.
[17] S.-Y Yang and W-Z Chen, "A 10GHz, Fast-Locking All-Digital Frequency Synthesizer," Master Thesis, Department of Electrical and Control Engineering, National Chiao Tung University, National Chiao Tung University, Nov., 2008.
[18] N. D. Dalt, “A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol.52, no.1, pp.21-31, Jan. 2005.
[19] C.-F. Liang, H.-H. Chen, and S.-I. Liu, “Spur-Suppression Techniques for Frequency Synthesizers,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol.54, no.8, pp.653-657, Aug. 2007.
[20] T.-C. Lee and W.-L. Lee, “A Spur Suppression Technique for Phase-Locked Frequency Synthesizers,” IEEE International Solid-State Circuits Conference, pp. 2432-2441, Feb. 2006.
[21] C.-Y. Kuo, J.-Y. Chang, and S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol.53, no.3, pp.526-533, March 2006.
[22] E. Temporiti, C. Weltin-Wu, D. Baldi, M. Cusmai, and F. Svelto,“A 3.5GHz Wideband ADPLL With Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 12, Dec. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top