跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾兆貴
論文名稱:具有低功耗與寫入輔助技術的40奈米製程256Kb 6T 靜態隨機存取記憶體
論文名稱(外文):40nm 256Kb 6T SRAM with Low-Power and Write Assistant Design
指導教授:周世傑周世傑引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:54
中文關鍵詞:靜態隨機存取記憶體低功耗寫入輔助技術40奈米製程
外文關鍵詞:SRAMLow PowerWrite Assistant Design40nm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於靜態隨機存取記憶體的高運算速度和高性能,近年來已被廣泛用於許多電子產品中。此外,靜態隨機存取記憶體也已廣泛應用於高性能微處理器的高速緩存區和嵌入式系統。因為高速度與面積考量,標準6T 靜態隨機存取記憶體單元一直以來都是主流。在先進技術中,標準6T 靜態隨機存取記憶體因為製程的變異所以寫入能力嚴重退化。特別是,在低的操作電壓,6T SRAM單元幾乎沒有辦法正常操作。
對於低功耗的應用,本文提出一個256 Kb 6T 靜態隨機存取記憶體並具備電源控制和低擺幅感測。電源控制減少了在待機狀態下的漏電功耗。低擺幅的感測在1.1V操作時降低了15%的功耗。為了提高寫入的能力,我們提出了VTRIP寫入輔助和負電壓輔助架構。透過聯電40奈米CMOS低功耗製程,此論文寫作之6T靜態隨機存取記憶體組成之256Kb晶片且面積是308x522 微米平方。該晶片具有非常寬的電壓操作範圍從1.5V到0.6V,工作頻率為800MHz@1.1V和25℃。在1.1V與溫度為25度C時,其待機功率為5.7微瓦。另外在電路操作時,讀取所耗的功率為1057微瓦,而寫入所耗的功率為793微瓦。

SRAMs have been widely used for most of electronic products due to their high operation speed and high performance in recent years. Moreover, SRAMs have been applied to the high-performance microprocessor cache and embedded system. Standard 6T SRAM cell becomes the mainstream of SRAMs design due to its highest speed and compact area. In advanced technology node, write-ability suffers a serious degradation by process variation [1]. Especially, at low operation voltage, 6T SRAM cell almost couldn’t have normal operation.
For low-power, this thesis presents a 256-Kb 6T SRAM with Power-Gating scheme and Low-Swing Sensing. Power-Gating scheme reduces the leakage power during standby. The Low-Swing sensing decreases 15% reading power @1.1V per operation. To enhance the Write-ability, Vtrip Write Assist and Negative–Power-Assist are employed. The 308 x 522um2 256-Kb SRAM macro has been fabricated in UMC 40-nm low-power CMOS technology. The chip has wide voltage range from 1.5V to 0.6V, with operating frequency of 800MHz@1.1V and 25℃. The standby power is 5.7uW @1.1V and 25℃. For the dynamic power, the read power is 1049uW and the write power is 793uW @1.1V and 25℃.

Chapter 1 Introduction …...…………………………………………………… 1
1.1 Motivation and Goals ....…………………………………………… 1
1.2 Thesis Organization .……………………………………………..… 2
Chapter 2 Overview of 6T SRAM Design ……………………………………. 3
2.1 The 6T SRAM ………………..……………………………………. 3
2.1.1 Structure of 6T SRAM …………………………….…….……. 3
2.1.2 Hold Static Noise Margin ………………….…………………. 4
2.1.3 Read Static Noise Margin …………………….………………. 5
2.1.4 Write Static Noise Margin ……………………………………. 6
2.1.5 Write Margin …………………………………………………. 7
2.1.6 Read Disturbance and Half Selected Disturbance ……………. 8
2.1.7 The Sizing Confliction of 6T SRAM ………………………... 10
2.2 The Architecture of SRAM Array ………………………….……... 11
2.2.1 Non-Bit-Interleaving Architecture …………………………... 12
2.2.2 Bit-Interleaving Architecture ………………………………... 14
2.2.3 Large Signal Sensing Scheme …………………………..…... 15
2.2.4 Differential Sensing Scheme ………………………………... 17
2.3 Global Variation and Local Variation Issue ……………..………... 19
2.4 The Design Methodology of Assistant Circuits …………………... 20
2.4.1 Low-Power Technique ………..……………... 20
2.4.2 Write-Assistant Circuits ……………………………………... 23
2.5 Summary …………………………..………………... 28
Chapter 3 The Design of 256Kb Low-Power 6T SRAM …………….……... 29
3.1 Introduction ……………………………..……... 29
3.2 Low-Power Technique …………………………... 31
3.2.1 Power-Gating Technique ……………………..……... 31
3.2.2 Low-Swing Sensing Scheme ………………………………... 33
3.3 Write Assistant Circuits …………………………………………... 36
3.4 Summary …………………………..………………... 40
Chapter4 Simulation Results and Chip Implementation .…………………... 41
4.1 Simulation Results .……………………………………..………... 41
4.2 Test Chip Implementation .…………...………... 47
4.3 Measurement Flow .……………………………..……... 49
Chapter 5 Conclusion .………………………………………………...……... 51
Reference .………………………………...…………………..…... 52

[1] P. R. Gray, P. J. Hurst, S. H. Lewis, P. G. Meyer, "Analysis and Design of Analog Integrated Circuit" 5rd ed. 2010 John Wiley.
[2] http://seekingalpha.com/article/1318831-intel-10-year-roadmap-and-creative-destruction
[3] S. Mukhopadhyay, K. Kang, H. Mahmoodi, K. Roy, “Reliable and self-repairing SRAM in nano-scale technologies using leakage and delay monitoring,” IEEE International Test Conference, 8-8 Nov. 2005, pp.1131-1135
[4] H. Pilo, “SRAM Design in the Nanoscale Era,” Digest of Tech. Papers, IEEE Solid-State Circuits Conference, 6-10 Feb. 2005, pp.366 - 367.
[5] A. S. Sedra, K. C. Smith, "Microelectronic Circuits" 5rd ed. Oxford University Press, 2003.
[6] B. H. Calhoun, A. P. Chandrakasan, "Static noise margin variation for sub-threshold SRAM in 65-nm CMOS," Solid-State Circuits, IEEE Journal of , vol.41, no.7, pp.1673,1679, July 2006
[7] B. H. Calhoun, A. P. Chandrakasan, "A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation," Solid-State Circuits, IEEE Journal of , vol.42, no.3, pp.680,688, March 2007
[8] W. Jiajing, S. Nalam, B. H. Calhoun, "Analyzing static and dynamic write margin for nanometer SRAMs," Low Power Electronics and Design (ISLPED), 2008 ACM/IEEE International Symposium on , vol., no., pp.129,134, 11-13 Aug. 2008
[9] C. T. Chuang, S. Mukhopadhyay, J. J. Kim, K. Kim, R. Rao, "High-performance SRAM in nanoscale CMOS: Design challenges and techniques," Memory Technology, Design and Testing, 2007. MTDT 2007. IEEE International Workshop on , vol., no., pp.4,12, 3-5 Dec. 2007
[10] M. H. Chang, Y. T. Chiu, S. L. Lai, W. Hwang, "A 1kb 9T subthreshold SRAM with bit-interleaving scheme in 65nm CMOS," Low Power Electronics and Design (ISLPED) 2011 International Symposium on , vol., no., pp.291,296, 1-3 Aug. 2011
[11] Y. Wang, U. Bhattacharya, F. Hamzaoglu, "A 4.0 GHz 291Mb voltage-scalable SRAM design in 32nm high-κ metal-gate CMOS with integrated power management," Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International , vol., no., pp.456,457,457a, 8-12 Feb. 2009
[12] S. Moriwaki, A. Kawasumi, T. Suzuki, T. Sakurai, A. Miyano, "0.4V SRAM with bit line swing suppression charge share hierarchical bit line scheme," Custom Integrated Circuits Conference (CICC), 2011 IEEE , vol., no., pp.1,4, 19-21 Sept. 2011
[13] S. Moriwaki, A. Kawasumi, T. Suzuki, T. Sakurai, A. Miyano ,"A 13.8pJ/Access/Mbit SRAM with charge collector circuits for effective use of non-selected bit line charges," VLSI Circuits (VLSIC), 2012 Symposium on , vol., no., pp.60,61, 13-15 June 2012
[14] Y. Fujimura, O. Hirabayashi, T. Sasaki, A. Suzuki, A. Kawasumi, Y. Takeyama, K. Kushida, G. Fukano, A. Katayama, Y. Niki, T. Yabe, "A configurable SRAM with constant-negative-level write buffer for low-voltage operation with 0.149µm2 cell in 32nm high-k metal-gate CMOS," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International , vol., no., pp.348,349, 7-11 Feb. 2010
[15] Y. W. Lin, H. I. Yang, M. C. Hsia, Y. W. Lin, C. H. Chen, C. T. Chuang, W. Hwang, "A 55nm 0.5V 128Kb cross-point 8T SRAM with data-aware dynamic supply Write-assist," SOC Conference (SOCC), 2012 IEEE International , vol., no., pp.218,223, 12-14 Sept. 2012
[16] M. H. Tu, J. Y. Lin, M. C. Tsai, C. Y. Lu, Y. J. Lin, M. H. Wang, H. S. Huang, K. D. Lee, W. C. Shih, S. J. Jou, C. T. Chuang, "A Single-Ended Disturb-Free 9T Subthreshold SRAM With Cross-Point Data-Aware Write Word-Line Structure, Negative Bit-Line, and Adaptive Read Operation Timing Tracing," Solid-State Circuits, IEEE Journal of , vol.47, no.6, pp.1469,1482, June 2012
[17] N. Shibata, H. Kiya, S. Kurita, H. Okamoto, M. Tan'no, T. Douseki, "A 0.5-V 25-MHz 1-mW 256-kb MTCMOS/SOI SRAM for solar-power-operated portable personal digital equipment - sure write operation by using step-down negatively overdriven bitline scheme," Solid-State Circuits, IEEE Journal of , vol.41, no.3, pp.728,742, March 2006
[18] H. Pilo, I. Arsovski, K. Batson, G. Braceras, J. Gabric, R. Houle, S. Lamphier, F. Pavlik, A. Seferagic, L. Y. Chen, S. B. Ko, C. Radens, "A 64Mb SRAM in 22nm SOI technology featuring fine-granularity power gating and low-energy power-supply-partition techniques for 37% leakage reduction," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International , vol., no., pp.322,323, 17-21 Feb. 2013
[19] E. Karl, Y. Wang, Y. G. Ng, Z. Guo, F. Hamzaoglu, M. Meterelliyoz, J. Keane, U. Bhattacharya, K. Zhang, K. Mistry, M. Bohr, "A 4.6 GHz 162 Mb SRAM Design in 22 nm Tri-Gate CMOS Technology With Integrated Read and Write Assist Circuitry," Solid-State Circuits, IEEE Journal of , vol.48, no.1, pp.150,158, Jan. 2013
[20] H. Pilo, I. Arsovski, K. Batson, G. Braceras, J. Gabric, R. Houle, S. Lamphier, F. Pavlik, A. Seferagic, L. Y. Chen, S. B. Ko, C. Radens, "A 64Mb SRAM in 32nm High-k metal-gate SOI technology with 0.7V operation enabled by stability, Write-ability and read-ability enhancements," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International , vol., no., pp.254,256, 20-24 Feb. 2011

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊