跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張邦聖
研究生(外文):Chang, Pang-Sheng
論文名稱:原子層沉積二氧化鋯/三氧化二鋁於砷化銦鎵金氧半電容之電性與表面化性分析的研究
論文名稱(外文):Investigation of Electrical and Interfacial Chemistry Analyses for Atomic-Layer-Deposition ZrO2/Al2O3/In0.53Ga0.47As MOSCAPs
指導教授:簡昭欣
指導教授(外文):Chien, Chao-Hsin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:95
中文關鍵詞:砷化銦鎵二氧化鋯三氧化二鋁原子層沉積電性表面化性
外文關鍵詞:In0.53Ga0.47AsZrO2Al2O3atomic-layer-depositionelectricalinterfacial chemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文初,我們研究了利用原子層沉積系統的前驅物做表面的預處理,像是TMA 以及 TEMAZ。然而,與TEMAZ 相比,我們發現TMA 表面處理可以有效地抑制聚積區的頻率分散與空乏區的介面缺陷電荷。為了更進一步探討二氧化鋯/砷化銦鎵的介面與閘極氧化層的特性,我們使用了不同的後沉積退火溫度及氮氫混合氣體退火。此外,藉由TMA 預處理,我們在二氧化鋯與砷化銦鎵的介面併入數層的三氧化二鋁,並且討論其表面特性。從數據分析上指出電容在每個不同的三氧化二鋁層條件下,後沉積退火溫度300度及氮氫混合氣體退火展現最好的電性。另外,我們利用電導法來萃取介面缺陷電荷密度;仍然可以觀察到在PDA 溫度300度及FGA下能隙深處 (midgap) 的缺陷電荷是最低的。在XPS分析的證明下,我們推測這個結果可能是在電容介面上有較高的As2+/As2O5、As2O3/As2O5、In2O3/InAsO4。此外,從電性與表面化學特性來看,我們可以證實較厚的三氧化二鋁夾層可以改善介面品質。
最後,我們建立了一個分佈模型來解釋操作在聚積區之半導體表面與閘極氧化層內缺陷的穿隧機制。然後我們利用模型與實驗數據做媒合並且定量地萃取閘極介電層內的缺陷密度。而與前面的結果相比有很好的一致性。
In the beginning of this thesis, we have investigated the surface pretreatment before depositing gate dielectric by using the precursors of ALD system, such as TMA and TEMAZ. However, compared to TEMAZ, we find the TMA surface treatment is effective to suppress the frequency dispersion and interface states in accumulation and depletion region. In order to further discuss the interface and gate oxide property of ZrO2/In0.53Ga0.47As MOSCAPs, we apply various post-deposition annealing temperatures with forming gas annealing (FGA). Moreover, by TMA pretreatment, we incorporate several Al2O3 inter-layers with the interface of ZrO2 and In0.53Ga0.47As and discuss their interface properties. It is noted that the MOSCAPs under PDA 300 °C with FGA show the best electrical characteristics at each Al2O3 inter-layer conditions. In addition, we utilize the conductance method to extract the density of interface states and still observe that the Dit exists near midgap is the lowest at PDA 300 °C with FGA. With the evidence of XPS analysis, we suppose that the result might be caused by higher amounts of the As2+/As2O5, As2O3/As2O5, and In2O3/InAsO4 at the MOSCAPs interface. Furthermore, from the electrical and interfacial chemistry characteristics, we demonstrate that the interface quality could be improved with thicker Al2O3 inter-layer.
Eventually, we establish a distributed model to explain the tunneling mechanism between the semiconductor surface and trap states in the gate oxide which is biased in accumulation region. And we fit the experimental data with the model and quantitatively extract trap states density of the gate dielectric. As comparing with the aforementioned results, they are in good consistency.
Abstract (Chinese)...... I
Abstract (English)...... III
Acknowledgement...... V
Contents...... VII
Figure Captions...... IX
Table Captions...... XVII
Chapter 1...... 1
1.1 General Background...... 1
1.2 Motivation...... 2
1.3 Organization of the Thesis...... 3
Reference (Chapter 1)...... 4
Chapter 2...... 8
2.1 Introduction...... 8
2.2 Experimental Procedures of In0.53Ga0.47As MOSCAPs...... 10
2.2.1 Various Surface Pretreatment and Capacitor Fabrication...... 10
2.2.2 Incorporating Several Cycles of Al2O3 with ALD-TMA /ZrO2 Growth and Capacitor Fabrication...... 11
2.3 Capacitor Characteristics and Interfacial Chemistry of ALD-ZrO2/In0.53Ga0.47As MOSCAPs with Various Pretreatments...... 12
2.3.1 C-V and G-V properties of MOSCAPs under Various Post-Deposition Annealing Conditions w/FGA...... 13
2.3.2 Comparison of Various Pretreatments on Electreical and Interfacial Chemistry Characteristics...... 14
2.4 Capacitor Characteristics of ALD-ZrO2/In0.53Ga0.47As MOSCAPs with inserting Al2O3 Inter-layers...... 15
2.4.1 C-V and G-V properties of MOSCAPs under Various Post-Deposition Annealing Conditions w/FGA...... 15
2.4.2 Comparison of Various Al2O3 cycles as Inter-layer of ALD-TMA/ZrO2 on Electreical Characteristics...... 17
2.5 Conductance Method...... 18
2.5.1 MOSCAPs with FGA under Various PDA Conditions...... 20
2.5.2 Comparison of Various Al2O3 cycles with same PDA Conditions...... 22
2.6 Summary...... 24
Reference (Chapter 2)...... 25
Chapter 3...... 69
3.1 Introduction...... 69
3.2 A Distributed Model for determining Border Traps...... 70
3.3 The Relationship between the Model and the measured Multi-frequency C-V and G-V Electrical property in Accumulation region...... 74
3.4 Summary...... 75
Reference (Chapter 3)...... 77
Chapter 4...... 93
Vita...... 95
Reference (Chapter 1)
[1]M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C(diamond), GaAs, GaP, GaSb, InAs, InP, InSb, World Scientific, Singapore, 1996...... 1
[2]S. Takagi, and M. Takenaka, “III-V/Ge CMOS technologies on Si platform,” IEEE Symposium on VLSI Technology, p. 147,2010...... 1
[3]D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, “Ge (100) and (111) n- and p-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Electron Devices, vol. 56, p. 648, 2009...... 2
[4]Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric,” Applied Physics Letters, vol. 88, p. 263518, 2006...... 2
[5]P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “ Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 84, p. 434, 2004...... 2
[6]Y. Xuan, H. Lin, and P. D. Ye, “Simplified surface preparation for GaAs passivation using atomic-layer-deposited high-k dielectrics,” IEEE Transactions on Electron Devices, vol. 54, pp. 1811–1817, Aug 2007...... 2
[7]H.-S. Kim, I. Ok, M. Zhang, F. Zhu, T. Lee, F. Zhu, L. Yu, J. C. Lee, S. Koveshnikov, W. Tsai, V. Tokranov, M. Yakimov, and S. Oktyabrsky,” Depletion-mode GaAs metal-oxide-semiconductor field-effect transistor with HfO2 dielectric and germanium interfacial passivation layer,” Appl. Phys. Lett., vol.89, p.222904 ,2006...... 2
[8]C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnel, G. J. Hughes, M. Milojevic, B. Lee, F. S. Agurre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace, ” Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation,” Appl. Phys. Lett., vol. 91, p.163512 ,2007...... 2
[9]Y. Xuan, H. Lin, and P. Ye, “Capacitance-voltage characterization of atomic- layer-deposited Al2O3/InGaAs and Al2O3/GaAs Metal-Oxide-Semiconductor structures,” ECS Transactions, vol. 3, no. 3, pp. 59–69, 2006...... 2
[10]W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States,” Phys. Rev. Lett. 44, 420 ,1980...... 2
[11]M. D. Pashley, K. W. Haberern, R. M. Feenstra, and P. D. Kirchner, “Different Fermi-level pinning behavior on n- and p-type GaAs(001),” Phys. Rev. B 48,4612 ,1993...... 2
[12]Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, “Comparison of Methods to Quantify Interface Trap Densities at Dielectric/III-V Semiconductor Interfaces,” J. Appl. Phys., vol. 108, p. 124101, 2010...... 2
Reference (Chapter 2)
[1]Fei Xue, Han Zhao, Yen-Ting Chen, Yanzhen Wang, Fei Zhou, and Jack C. Lee, “InAs inserted InGaAs buried channel metal-oxide-semiconductor field-effect-transistors with atomic-layer-deposited gate dielectric,” Appl. Phys. Lett., vol. 98, p. 082106 ,2011...... 8
[2]S.H. Kim, M. Yokoyama, N. Taoka1, R. Iida, S. Lee1, R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M.Takenaka, S.Takagi, “Self-Aligned Metal Source/Drain InxGa1-xAs n-Metal–Oxide–Semiconductor Field-Effect Transistors Using Ni–InGaAs Alloy,” IEDM, p. 596, 2010...... 8
[3]Hau-Yu Lin, San-Lein Wu, Chao-Ching Cheng, Chih-Hsin Ko, Clement H. Wann, You-Ru Lin,Shoou-Jinn Chang, and Tai-Bor Wu, “Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors” Appl. Phys. Lett., vol. 98, p. 123509 ,2011...... 8
[4]J. Robertsona and L. Lin, “Bonding principles of passivation mechanism at III-V-oxide interfaces,” Appl. Phys. Lett., vol. 99, p. 222906 ,2011...... 8
[5]R. Suzuki,N. Taoka, M. Yokoyama, S. Lee, S. H. Kim, T. Hoshii, T. Yasuda,W. Jevasuwan, T. Maeda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density,” Appl. Phys. Lett., vol. 100, p. 132906 ,2012...... 8
[6]P. D. Ye, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited),” J. Vac. Sci. Technol. A 26, 697, 2008...... 8
[7]Luca Morassi, Student Member, IEEE, Andrea Padovani, Member, IEEE, Giovanni Verzellesi, Senior Member, IEEE, Dmitry Veksler, Injo Ok, and Gennadi Bersuker, Member, IEEE, “Interface-Trap Effects in Inversion-Type Enhancement-Mode InGaAs/ZrO2 N-Channel MOSFETs,” IEEE Trans. Electron Devices, vol. 58, p. 107, 2011...... 8
[8]H.-C. Chin, X. Liu, X. Gong, and Y.-C. Yeo, “Silane and ammonia surface passivation technology for high-mobility In0.53Ga0.47As MOSFETs,” IEEE Trans. Electron Devices, vol. 57, p. 973, 2010...... 8
[9]M. Xu, K. Xu, R. Contreras, M. Milojevic, T. Shen, O. Koybasi, Y. Q. Wu, R. M. Wallace, and P. D. Ye, “New insight into Fermi-level unpinning on GaAs: Impact of different surface orientations,” IEDM Tech. Dig., pp. 865–868, 2009...... 8
[10]I. Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, D. Garcia,P. Majhi, N. Goel, W. Tsai, C. K. Gaspe, M. B. Santos, and J. C. Lee, “Self-aligned n-channel metal-oxide-semiconductor field effect transistor on high-indium-content In0.53Ga0.47As and InP using physical vapor deposition HfO2 and silicon interface passivation layer,” Appl. Phys. Lett., vol. 92, no. 20, p. 202 903, 2008...... 8
[11]Alireza Alian, Guy Brammertz, Clement Merckling, Andrea Firrincieli, Wei-E Wang, H. C Lin, Matty Caymax, Marc Meuris, Kristin De Meyer, and Marc Heyns, “Ammonium sulfide vapor passivation of In0.53Ga0.47As and InP surfaces,” Appl. Phys. Lett., vol. 99, p. 112114 ,2011...... 8
[12]Zuoguang Liu, Sharon Cui, Pini Shekhter, Xiao Sun, Lior Kornblum, Jie Yang, Moshe Eizenberg, K. S. Chang-Liao, and T. P. Ma, “Effect of H on interface properties of Al2O3/In0.53Ga0.47As,” Appl. Phys. Lett., vol. 99, p. 222104 ,2011...... 8
[13]C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008...... 8
[14]M. M. Frank, G. D. Wilk, D. Starodub, T. Guatafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, p. 152904, 2005...... 8,9
[15]M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., vol. 87, p. 252104, 2005...... 8
[16]C. L. Hinkle, E. M. Vogel, P. D. Ye, and R. M. Wallace,” Interfacial chemistry of oxides on InxGa(1−x)As and implications for MOSFET applications” Curr. Opin. Solid State Mater. Sci. 15, 188–207, 2011..... 8
[17]M. Kobayashi, P. T. Chen, Y. Sun, N. Goel, P. Majhi, M. Garner, W. Tsai, P. Pianetta, and Y. Nishi, “Synchrotron radiation photoemission spectroscopic study of band offsets and interface self-cleaning by atomic layer deposited HfO2 on In0.53Ga0.47As and In0.52Al0.48As,” Appl. Phys. Lett., vol. 93, p. 182103, 2008...... 8
[18]P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition” Appl. Phys. Lett., vol. 84, p. 434, 2005...... 9
[19]N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, J. S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett. vol. 89, p.163517, 2006...... 9
[20]Y Zhou, N Kojima and K Sasaki, Growth and dielectric properties of tetragonal ZrO2 films by limited reaction sputtering,” Appl. Phys. Lett. vol. 41, p. 175414, 2008...... 9
[21]S. K. Dey, C.-G. Wang, D. Tang, M. J. Kim, R. W. Carpenter, C. Werkhoven, and E. Shero, “Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry,” J. Appl. Phys., vol. 93, p. 4144, 2003...... 9
[22]C.H. Lee, H.F. Luan, W.P. Bai, S.J. Lee, T.S. Jeon, Y. Senzaki, D. Roberts,D.L. Kwong, “MOS Characteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” IEDM Tech. Dig., pp. 27-30, 2000...... 9
[23]Wenke Weinreich, Tina Tauchnitz, Patrick Polakowski, Maximilian Drescher, Stefan Riedel, Jonas Sundqvist, Konrad Seidel, Mahdi Shirazi, Simon D. Elliott, Susanne Ohsiek, Elke Erben, and Bernhard Trui, “TEMAZ/O3 atomic layer deposition process with doubled growth rate and optimized interface properties in metal–insulator–metal capacitors,” J. Vac. Sci. Technol. A 31 (1), 01A123 - 01A123-11, 2013...... 9
[24]J. C. Garcia, L. M. R. Scolfaro, A. T. Lino, V. N. Freire, G. A. Farias, C. C. Silva, H. W. Leite Alves, S. C. P. Rodrigues, and E. F. da Silva, Jr., “Structural, electronic, and optical properties of ZrO2 from ab initio calculations,” J. Appl. Phys., vol. 100, p. 104103, 2006...... 9
[25]Maciej Gutowski, John E. Jaffe, Chun-Li Liu, Matt Stoker, Rama I. Hegde, Raghaw S. Rai, and Philip J. Tobin, “Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Applied Physics Letters, vol. 80, p. 1897, 2002...... 9
[26]Wen-Jie Qi, Renee Nieh, Byoung Hun Lee, Laegu Kang, Yongjoo Jeon, and Jack C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application,” Applied Physics Letters, vol. 77, p. 3269, 2000...... 9
[27]Yohan Seo, Sangyouk Lee, Ilsin An, Chulgi Song, and Heejun Jeong, “Conduction mechanism of leakage current due to the traps in ZrO2 thin film,” Semicond. Sci. Technol., vol.24, p.115016, 2009...... 9
[28]N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M.Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, “Addressing The Gate Stack Challenge For High Mobility InxGa1-xAs Channels For NFETs” , IEDM Tech. Dig., pp. 1-4, 2008...... 9
[29]S. Monaghan, A. O’Mahony, K. Cherkaoui, É. O’Connor, I. M. Povey, M. G. Nolan,D. O’Connell, M. E. Pemble, and P. K. Hurley, “Electrical analysis of three-stage passivated In0.53Ga0.47As capacitors with varying HfO2 thicknesses and incorporating an Al2O3 interface control layer,” J. Vac. Sci. Technol. B 29, 807 ,2011...... 9
[30]B. Brennan, M. Milojevic, H. C. Kim, P. K. Hurley, J. Kim, G. Hughes, and R. M. Wallace, “Half-Cycle Atomic Layer Deposition Reaction Study Using O3 and H2O Oxidation of Al2O3 on In0.53Ga0.47As,” Electrochem. Solid-State Lett. Vol. 12, p. H205-207, 2009...... 9
[31]V. Djara, K. Cherkaoui, M. Schmidt, S. Monaghan, E. O’Connor, I. M. Povey, D. O’Connell, M. E. Pemble, and P. K. Hurley, “Impact of Forming Gas Annealing on the Performance of Surface-Channel In0.53Ga0.47As MOSFETs With an ALD Al2O3 Gate Dielectric,” IEEE Trans. on Electron Devices, vol. 59, p. 1084, 2012...... 9
[32]Jenny Hu and H.-S. Philip Wong, “Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs,” J. Appl. Phys., vol. 111, p. 044105, 2012...... 9
[33]M. Kobayashi, P. T. Chen, Y. Sun, N. Goel, P. Majhi, M. Garner, W. Tsai, P. Pianetta, and Y. Nishi, “Synchrotron radiation photoemission spectroscopic study of band offsets and interface self-cleaning by atomic layer deposited HfO2 on In0.53Ga0.47As and In0.52Al0.48As,” Applied Physics Letters, vol. 93, p. 182103, 2008...... 15
[34]H. Zhao, J. H. Yum, Y. T. Chen, and J. C. Lee, ”In0.53Ga0.47As n-metal-oxide-semiconductor field effect transistors with atomic layer deposited Al2O3, HfO2, and LaAlO3 gate dielectrics,” J. Vac. Sci. Technol. B 27,2024, 2009...... 15
[35]Kuniharu Takei, Rehan Kapadia, Hui Fang, E. Plis, Sanjay Krishna, and Ali Javey, “High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics,” Appl. Phys. Lett. vol. 102, p. 153513, 2013...... 16
[36]Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, “Comparison of Methods to Quantify Interface Trap Densities at Dielectric/III-V Semiconductor Interfaces,” J. Appl. Phys., vol. 108, p. 124101, 2010...... 18
[37]E.H. Nicollian and A. Goetzberger, “The Si-SiO2 Interface-Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique,” Bell Syst. Tech. J., vol 46, pp. 1055–1133, 1967...... 18
[38]Alessandro Molle, Guy Brammertz, Luca Lamagna, Marco Fanciulli, Marc Meuris, and Sabina Spiga, “Ge-based interface passivation for atomic layer deposited La-doped ZrO2 on III-V compound (GaAs, In0.15Ga0.85As) substrates,” Appl. Phys. Lett. vol. 95, p. 023507, 2009...... 22
[39]L. Lamagna, A. Molle, C. Wiemer, S. Spiga, C. Grazianetti, G. Congedo, and M. Fanciulli, “Atomic Layer Deposition of Al-Doped ZrO2 Thin Films as Gate Dielectric for In0.53Ga0.47As,” J. Electrochem. Soc., vol. 159, p. H220, 2008...... 22
[40]Alessandro Molle, Luca Lamagna, Claudia Wiemer, Sabina Spiga, Marco Fanciulli, Clement Merckling, Guy Brammertz, and Matty Caymax, “Improved Performance of In0.53Ga0.47As-Based Metal–Oxide–Semiconductor Capacitors with Al:ZrO2 Gate Dielectric Grown by Atomic Layer Deposition,” Appl. Phys. Express. vol. 4, p. 094103, 2011...... 22
[41]Luca Morassi, Andrea Padovani, Giovanni Verzellesi, Dmitry Veksler, Injo Ok, and Gennadi Bersuker, “Interface-Trap Effects in Inversion-Type Enhancement-Mode InGaAs/ZrO2 N-Channel MOSFETs,” IEEE Trans. on Electron Devices, vol. 58, no. 1, 2011...... 23
[42]Rena Suzuki, Noriyuki Taoka, Masafumi Yokoyama, Sang-Hyeon Kim, Takuya Hoshii, Tatsuro Maeda, Tetsuji Yasuda, Osamu Ichikawa, Noboru Fukuhara, Masahiko Hata, Mitsuru Takenaka, and Shinichi Takagi, ” Impact of atomic layer deposition temperature on HfO2/InGaAs metal-oxide-semiconductor interface properties,” J. Appl. Phys., vol. 112, p. 084103, 2012...... 23
Reference (Chapter 3)
[1]D.M. Fleetwood, ““Border Traps” in MOS devices,” IEEE Trans. Nucl. Sci., vol. 39, no. 2, pp. 269-271, 1992...... 69
[2]D.J. DiMaria, D.A. Buchanan, J.H. Stathis, and R.E. Stahlbush, “Interface states induced by the presence of trapped holes near the silicon-silicon dioxide interface,” J. Appl. Phys., vol. 77, no. 5, pp. 2032-2040, 1995...... 69
[3]D.M. Fleetwood, W.L. Warren, M.R. Shaneyfelt, R.A.B. Devine, and J.H. Scofield, “Enhanced MOS 1/f noise due to near-interfacial oxygen deficiency,” J. Non-Cryst. Solids, vol. 187, pp. 199-205, 1995...... 69
[4]E. Simoen, H.-C. Lin, A. Alian, G. Brammertz, C. Merckling, J. Mitard, and C. Claeys, “Border Traps in Ge/III-V Channel Devices: Analysis and Reliability Aspects,” Deviceand Materials Reliability, IEEE Trans., vol. PP, p.99, 2013...... 69.73
[5]F. P. Heiman, and G. Warfield, “The effects of oxide traps on the MOS capacitance,” IEEE Trans. Electron Devices, vol. ED-12, p.167, 1965...... 69-71
[6]E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982...... 69.71.72
[7]H. Prier, “Contribution of surface states to MOS impedance,” Appl. Phys. Lett., vol. 10, p. 361, 1967.... 70
[8]Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012...... 70
[9]Y. Yuan, L. Wang, B. Yu, B. Shih, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3 – InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011...... 70
[10]D. S. L. Mui, J. Reed, D. Biswas, and H. Morkoc, “A new circuit model for tunneling related trapping at insulator-semiconductor interfaces in accumulation,” J. Appl. Phys., vol. 72, p. 553, 1992...... 70
[11]Chen Zhang, Student Member, IEEE, Min Xu, Peide D. Ye, Fellow, IEEE, and Xiuling Li, Senior Member, IEEE ,” A Distributive-Transconductance Model for Border Traps in III–V/High-k MOS Capacitors,” IEEE Trans. Electron Devices, vol. 34, no. 6, 2013...... 73
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊