跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏思勻
研究生(外文):Wei, Sih-Yun
論文名稱:探討奈米級場效電晶體之遠距庫倫效應
論文名稱(外文):Probing long-range Coulomb interactions in nanoscale MOSFETs
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-Jer
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:52
中文關鍵詞:遠距庫倫電子遷移率
外文關鍵詞:Long-rang Coulombmobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由近年研究可得知,元件尺寸縮減時電子遷移率會伴隨遞減,這也指出了有額外的碰撞機制存在,並且此機制會對下一世代的元件造成很大的影響。日前我們透過實驗探討遠距庫倫效應是由於在長通道場效電晶體內多晶矽閘極裡的電漿電子造成。而在本篇論文,我們進一步探討在高濃度的源極與汲極的電漿電子所造成的遠距庫倫散射機制所造成的影響。我們使用的量測的元件為在同一製程下做出的不同尺寸元件,其中並包含了短通道長度為33奈米的元件。研究方法主要藉由一系列有系統的實驗與二維模擬器的搭配,並根據馬西森定則去萃取造成短通道電子遷移率下降的額外散射機制。由溫度效應去探討N型超短通道場效電晶體下的散射機制。最後根據其溫度效應我們認為源極與汲極的電漿電子造成的影響,會隨著通道長度的減短而增加。此外我們也提供了另一項證據,我們在大的汲極電壓下量測到的轉導值與文獻中考慮遠距庫倫效應下的模擬值相符。
Electron mobility degradation is currently frequently encountered in highly scaled devices. This means that additional scattering mechanisms exist and will become profoundly important in the next-generation of devices. We have recently experimentally probed long-range Coulomb interactions due to plasmons in polysilicon gate of long-channel (1 m) MOSFETs. In this paper, we further probe those due to plasmons in the highly-doped source and drain. Test vehicles include four more samples from the same manufacturing process but with small channel lengths (down to 33 nm). I-V’s of devices are measured at two drain voltages of 0.05 and 1 V, in a temperature range of 292 to 380 K. Inverse modeling technique is applied to furnish calibrated doping profiles. The inversion-layer electron effective mobility is thereby extracted, showing a decreasing trend with decreasing channel length. Such differences reflect more additional scatterers in the shorter devices. Mobility components limited by these additional scatterers are assessed using Matthiessen’s rule. Extracted temperature dependencies reveal that the strength of source/drain plasmons increases with decreasing channel length. Corroborative evidence is given as well.
Chinese Abstract I
Abstract II
Acknowledgements III
Contents IV
Figure Captions V
Chapter 1 Introduction 1
Chapter 2 Measurement Framework 2
2.1 Experiment 2
2.2 Effective Inversion-Layer Mobility 3
Chapter 3 Inverse Modeling 5
3.1 C-V Fitting 5
3.2 I-V Fitting 6
3.3 Inversion Layer Charge Density 7
3.4 Source/Drain Series Resistance 8
3.5 Simulation Result 9
Chapter 4 Analysis and Discussion 10
4.1 Additional Scatterers 10
4.2 Source of Mobility Degradation in Short-Channel Device 12
4.3 Evidence of Long-Range Coulomb Interactions 13
Chapter 5 Conclusion 14
References 15

[1]. D. Pines and D. Bohm, “A collective description of electron interactions:II. Collective vs individual particle aspects of the interactions,” Phys. Rev., vol. 85, no. 2, pp.338-353, Jan. 1952.
[2]. M. V. Fischetti and S. E. Laux, “Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability,” J. Appl. Phys., vol. 89, no. 2, pp. 1205-1231, Jan. 2001.
[3]. M. V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II: Effective electron mobility in thin-oxide structures,” J. Appl. Phys., vol. 89, no. 2, pp. 1232-1250, Jan. 2001.
[4]. K. Nakanishi, T. Uechi, and N. Sano, “Self-consistent Monte Carlo device simulations under nano-scale device structures: Role of Coulomb interaction, degeneracy, and boundary condition,” in IEDM Tech. Dig., 2009, pp. 79-82.
[5]. M. V. Fischetti, T. P. O’Regan, S. Narayanan, C. Sachs, S. Jin, J. Kim, and Y. Zhang, “Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2116-2136, Sept. 2007.
[6]. M. J. Chen, L. M. Chang, S. J. Kuang, C. W. Lee, S. H. Hsieh, C. A. Wang, S. C. Chang, and C. C. Lee, “Temperature-oriented mobility measurement and simulation to assess surface roughness in ultrathin-gate-oxide (~1 nm) nMOSFETs and Its TEM evidence,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 949-955, April 2012.
[7]. K. Rim, S. Narasimha, M. Longstreet, A. Mocuta, and J. Cai, “Low field mobility characteristics of sub-100 nm unstrained and strained Si MOSFETs,” in IEDM Tech. Dig., 2002, pp. 43-46.
[8]. A. Cros, K. Romanjek, D. Fleury, S. Harrison, R. Cerutti, P. Coronel, B. Dumont, A. Pouydebasque, R. Wacquez, B. Duriez, R. Gwoziecki, F. Boeuf, H. Brut, G. Ghibaudo, and T. Skotnicki, “Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling,” in IEDM Tech. Dig., 2006, pp. 1-4.
[9]. V. Barral, T. Poiroux, D. Munteanu, J. Autran, and S. Deleonibus, “Experimental investigation on the quasi-ballistic transport: Part II – Backscattering coefficient extraction and link with the mobility,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 420-430, Mar. 2009.
[10]. F. Stern, “Calculated temperature dependence of mobility in silicon inversion layers,” Phys. Rev, Lett., vol. 44, no.22, pp.1469-1472, Jun. 1980.
[11]. D. Esseni and F. Driussi, “A quantitative error analysis of the mobility extraction according to the Matthiessen rule in advanced MOS transistors,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2415-2422, Aug. 2011.
[12]. S. Takagi and M. Takayanagi, “Experimental evidence of inversion-layer mobility lowering in ultrathin gate oxide metal-oxide-semiconductor field-effect-transistors with direct tunneling current,” Jpn. J. Appl. Phys., vol. 41,pt. 1, no. 4B, pp. 2348-2352, Apr. 2002.
[13]. TCAD Sentaurus, version G-2012.06, Synopsys, June 2012.
[14]. Schred, http://nanohub.org/resources/schred.
[15]. M. J. Chen, C. C. Lee, and K. H. Cheng, “Hole effective masses as a booster of self-consistent six-band k•p simulation in inversion layers of pMPSFETs,” IEEE Trans. Electron Devices, vol. 58, pp. 931-937, April 2011.
[16]. D.W. Lin, M. L. Cheng, S.W.Wang, C. C.Wu, and M. J. Chen, “A novel method of MOSFET series resistance extraction featuring constant mobility criteria and mobility universality,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 890–897, Apr. 2010.
[17]. S. Saito, K. Torii, Y. Shimamoto, S. Tsujikawa, H. Hamamura, O. Tonomura, T. Mine, D. Hisamoto, T. Onai, J. Yugami, M. Hiratani, and S. Kimura, “Effects of remote-surface-roughness scattering on carrier mobility in field-effect-transistors with ultrathin gate dielectrics,” Appl. Phys. Lett., vol. 84, no. 8, pp. 1395-1397, Feb. 2004.
[18]. M. S. Shur, “Low ballistic mobility in submicron HEMTs,” IEEE Electron Lett., vol. 23, vol. 9, pp. 511-513, Sep. 2002.
[19]. M. Zilli, D. Esseni, P. Palestri, and L. Selmi, “On the apparent mobility in nanometric n-MOSFETs,” IEEE Electron Lett., vol. 28, vol. 11, pp. 1036-1039, Nov. 2007.
[20]. N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Estimation of the effects of remote charge scattering on electron mobility of n-MOSFETs with ultrathin gate oxides,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 440-447, Feb. 2000.
[21]. M. Cassé, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs: Physical insight into critical parameters,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 759-768, Apr. 2006.
[22]. P. Toniutti, P. Palestri, D. Esseni, F. Driussi, M. De Michielis, and L. Selmi, “On the origin of the mobility reduction in n- and p-metal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks,” J. Appl. Phys., vol. 112, no. 3, p. 034502, Aug. 2012.
[23]. M. V. Fischetti, “Effect of the electron-plasmon interaction on the electron mobility in silicon,” Phys. Rev, B, vol. 44, no.11, pp.5527-5534, Sep. 1991.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top