|
[1]. D. Pines and D. Bohm, “A collective description of electron interactions:II. Collective vs individual particle aspects of the interactions,” Phys. Rev., vol. 85, no. 2, pp.338-353, Jan. 1952. [2]. M. V. Fischetti and S. E. Laux, “Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability,” J. Appl. Phys., vol. 89, no. 2, pp. 1205-1231, Jan. 2001. [3]. M. V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II: Effective electron mobility in thin-oxide structures,” J. Appl. Phys., vol. 89, no. 2, pp. 1232-1250, Jan. 2001. [4]. K. Nakanishi, T. Uechi, and N. Sano, “Self-consistent Monte Carlo device simulations under nano-scale device structures: Role of Coulomb interaction, degeneracy, and boundary condition,” in IEDM Tech. Dig., 2009, pp. 79-82. [5]. M. V. Fischetti, T. P. O’Regan, S. Narayanan, C. Sachs, S. Jin, J. Kim, and Y. Zhang, “Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2116-2136, Sept. 2007. [6]. M. J. Chen, L. M. Chang, S. J. Kuang, C. W. Lee, S. H. Hsieh, C. A. Wang, S. C. Chang, and C. C. Lee, “Temperature-oriented mobility measurement and simulation to assess surface roughness in ultrathin-gate-oxide (~1 nm) nMOSFETs and Its TEM evidence,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 949-955, April 2012. [7]. K. Rim, S. Narasimha, M. Longstreet, A. Mocuta, and J. Cai, “Low field mobility characteristics of sub-100 nm unstrained and strained Si MOSFETs,” in IEDM Tech. Dig., 2002, pp. 43-46. [8]. A. Cros, K. Romanjek, D. Fleury, S. Harrison, R. Cerutti, P. Coronel, B. Dumont, A. Pouydebasque, R. Wacquez, B. Duriez, R. Gwoziecki, F. Boeuf, H. Brut, G. Ghibaudo, and T. Skotnicki, “Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling,” in IEDM Tech. Dig., 2006, pp. 1-4. [9]. V. Barral, T. Poiroux, D. Munteanu, J. Autran, and S. Deleonibus, “Experimental investigation on the quasi-ballistic transport: Part II – Backscattering coefficient extraction and link with the mobility,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 420-430, Mar. 2009. [10]. F. Stern, “Calculated temperature dependence of mobility in silicon inversion layers,” Phys. Rev, Lett., vol. 44, no.22, pp.1469-1472, Jun. 1980. [11]. D. Esseni and F. Driussi, “A quantitative error analysis of the mobility extraction according to the Matthiessen rule in advanced MOS transistors,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2415-2422, Aug. 2011. [12]. S. Takagi and M. Takayanagi, “Experimental evidence of inversion-layer mobility lowering in ultrathin gate oxide metal-oxide-semiconductor field-effect-transistors with direct tunneling current,” Jpn. J. Appl. Phys., vol. 41,pt. 1, no. 4B, pp. 2348-2352, Apr. 2002. [13]. TCAD Sentaurus, version G-2012.06, Synopsys, June 2012. [14]. Schred, http://nanohub.org/resources/schred. [15]. M. J. Chen, C. C. Lee, and K. H. Cheng, “Hole effective masses as a booster of self-consistent six-band k•p simulation in inversion layers of pMPSFETs,” IEEE Trans. Electron Devices, vol. 58, pp. 931-937, April 2011. [16]. D.W. Lin, M. L. Cheng, S.W.Wang, C. C.Wu, and M. J. Chen, “A novel method of MOSFET series resistance extraction featuring constant mobility criteria and mobility universality,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 890–897, Apr. 2010. [17]. S. Saito, K. Torii, Y. Shimamoto, S. Tsujikawa, H. Hamamura, O. Tonomura, T. Mine, D. Hisamoto, T. Onai, J. Yugami, M. Hiratani, and S. Kimura, “Effects of remote-surface-roughness scattering on carrier mobility in field-effect-transistors with ultrathin gate dielectrics,” Appl. Phys. Lett., vol. 84, no. 8, pp. 1395-1397, Feb. 2004. [18]. M. S. Shur, “Low ballistic mobility in submicron HEMTs,” IEEE Electron Lett., vol. 23, vol. 9, pp. 511-513, Sep. 2002. [19]. M. Zilli, D. Esseni, P. Palestri, and L. Selmi, “On the apparent mobility in nanometric n-MOSFETs,” IEEE Electron Lett., vol. 28, vol. 11, pp. 1036-1039, Nov. 2007. [20]. N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Estimation of the effects of remote charge scattering on electron mobility of n-MOSFETs with ultrathin gate oxides,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 440-447, Feb. 2000. [21]. M. Cassé, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs: Physical insight into critical parameters,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 759-768, Apr. 2006. [22]. P. Toniutti, P. Palestri, D. Esseni, F. Driussi, M. De Michielis, and L. Selmi, “On the origin of the mobility reduction in n- and p-metal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks,” J. Appl. Phys., vol. 112, no. 3, p. 034502, Aug. 2012. [23]. M. V. Fischetti, “Effect of the electron-plasmon interaction on the electron mobility in silicon,” Phys. Rev, B, vol. 44, no.11, pp.5527-5534, Sep. 1991.
|