|
[1.1] http://en.wikipedia.org/wiki/Kyoto_Protocol [1.2] http://www.nrel.gov/docs/fy14osti/60894.pdf [1.3]http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modules- dominate-solar-pv-industry-2014 [1.4] http://www.solarbuzz.com/tw/reports/pv-equipment-quarterly [1.5] http://about.bnef.com/summit/content/uploads/sites/3/2013/11/BNEF_2012_03_ 19_University_Solar_Power.pdf [1.6] G. Makrides, B. Zinsser, G. E. Georghiou, M. Schubert, J. H. Werner, “Outdoor efficiency of different photovoltaic systems installed in Cyprus and Germany,” 33th IEEE Photovoltaic Specialists Conference (PVSC) , San Diego, pp. 1-6, 2008. [1.7] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19.9%-effcient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008. [1.8] N.A.K. Abdul-Hussein, “Electrical Properties of RF Sputtered Thin Films of CuInSe2 (I),” Crystal Research and Crystal Technology, vol. 20, pp. 509-514, 1985. [1.9] F. R. White, A.H. Clark, M.C. Graf, L.L. Kazmerski, “Growth of CuInSe2 on CdS using Molecular Beam Epitaxy,” Journal of Applied Physics, vol. 50, pp. 544-545, 1979. [1.10] S. H. Yoon, S. Hwan, “ Preparation of CuInSe2 Thin-Films through Metal Organic Chemical Vapor Deposition Method by using Di-μ-Methylselenobis and Bis Copper(II) Precursors,” Thin Solid Films ,vol. 515, pp. 1544-1547, 2006. [1.11] A. A. Akl, H.H. Afify, “Growth, Microstructure, Optical and Electrical Properties of Sprayed CuInSe2 Polycrystalline Films,” Materials Research Bulletin, vol. 43, pp. 1539-1548, 2008. [1.12] J. F. Guillemoles, “Recrystallization of Electrodeposited Copper Indium Di-Selenide Thin-Films in an Atmosphere of Elemental Selenium,” Advanced Materials, vol. 6, pp. 376-379, 1994. [1.13] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, “Low-cost CIGS solar cells by paste coating and selenization,” Thin Solid Films, vol. 480, pp. 486-490, 2005. [1.14] M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, “CIS and CIGS layers from selenized nanoparticle precursors,” Thin Solid Films, vol. 432, pp. 58-62, 2003. [1.15] H. Liang, U. Avachat, W. Liu, J. v. Duren, M. Le, “CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere,” Solid-State Electronics, vol. 76, pp. 95-100, 2012. [1.16] T. Godecke, T. Haalboom, F. Ernst, “Phase equilibria of Cu-In-Se I. Stable states and nonequilibrium state of the In2Se3-Cu2Se subsystem,” Z. Metallkd. vol. 91, pp. 622–634, 2000. [1.17] W. Liu, J.G. Tian, “In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system,” Thin Solid Films, vol. 519, pp. 244–250, 2010. [1.18] C. Guillen, J. Herrero, “Semiconductor CuInSe2 formation by close-spaced selenization processes in vacuum,” Vacuum, vol. 67, pp. 659-664., 2002. [1.19] O. Lundberg,y, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp.77-88, 2003. [1.20] S. B. Zhang, Su-Huai Wei, Alex Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconduct,” Physical Review B, vol. 57(16), pp.9642-9655, 1998. [1.21] U. Rau, H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges,” Applied Physics A, vol. 69, pp.131-147, 1999. [1.22] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “Infuence of sodium on the growth of polycrystalline Cu(In,Ga)Se2,” Thin Solid Films, vol. 361-362, pp.161-166, 2000. [1.23] W. J. Yin, Y. Wu, R. Noufi, M. A. Jassim, Y. Yan, “Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2,” Applied Physics Letters, vol. 102, p.193905-1, 2013. [1.24] L. Kronik, D. Cahen, H. W. Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance,” Advanced Materials, vol. 10(1), pp. 31-36, 1998. [1.25] K. Otte, G. Lippold, H. Neumann, A. Schindler, “Hydrogen in CuInSe2,” Journal of Physics and Chemistry of Solids, vol. 64, pp.1641-1647, 2003. [1.26] D.W. Lee, M.S. Seol, D.W. Kwak, J.S. Oh, J.H. Jeong, H.Y. Cho, “Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films,” Thin Solid Films, vol. 520, pp.6382-6385, 2012. [1.27] Z.Q. Li, J.H. Shi, D.W. Zhang, Q.Q. Liu, Z. Sun, Y.W. Chen, Z. Yang, S.M. Huang, “Cu(In,Ga)Se2 solar cells with double layered buffers grown by chemical bath deposition,” Thin Solid Films, vol. 520, pp. 9642-9655, 2011. [1.28] D. Dwyer, R. Sun, H. Efstathiadis, P. Haldar, “Characterization of chemical bath deposited buffer layers for thin film solar cell applications,” Physical Status Solidi A, vol. 207(10), pp. 2272-2278, 2010. [1.29] J. Pouzet, J.C. Bernede, “MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films,” Revue de Physique Appliquee, vol. 25, p.807-15, 1990. [1.30] H. Park, S. C. Kim, S. H. Lee, J. Koo, S. H. Lee, C. W. Jeon, S. Yoon, W. K. Kim, “Effect of precursor structure on Cu(InGa)Se2 formation by reactive annealing,” Thin Solid Films, vol. 519, pp. 7245-7249, 2011. [1.31] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013. [1.32] X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, R. F. Hicks , “High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride,” Plasma Sources Science and Technology, vol. 14, pp. 412-418, 2005. [1.33] G. R. Nowling, S. E. Babayan, V. Jankovic, R. F. Hicks, “Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure,” Plasma Sources Science and Technology, vol. 11, pp. 97-103, 2002. [1.34] C. Huang, C.H. Liu, S.Y. Wu, “Surface characterization of the SiOx films prepared by a remote atmospheric pressure plasma jet,” Surface and Interface Analysis, vol. 41(1), pp. 44-48, 2009. [1.35] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,” IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998. [2.1] I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. K. Metzger, M. A.Contreras, “Required material properties for high-efficiency CIGS modules,” Proceedings of SPIE, vol. 7409, p.74090M-1, 2009. [2.2] L. Kronik, D. Cahen, H. W. Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance,” Advanced Materials, vol. 10(1), pp. 31-36, 1998. [2.3] S. B. Zhang, S. H. Wei, A. Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Physical Review B, vol. 57(16), pp. 9642-9656, 1998. [2.4] U. Rau, D. Braunger, R. Herberholz, H. W. Schock, J. F. Guillemoles, L. Kronik, D. Cahen, “Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices,” Journal of Applied Physics, vol. 86, pp. 497-505,1999. [2.5] W. J. Yin, Y. Wu, R. Noufi, M. A. Jassim, Y. Yan, “Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2,” Applied Physics Letters, vol. 102, p. 193905-1, 2013. [2.6] K. M. Chang, P. C. Ho, S. H. Yu, J. M. Hsu, K. H. Yang, C. J. Wu, C. C. Chang, “Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells,” Applied Surface Science, vol. 276, pp. 756-760, 2013. [2.7] K. M. Chang, S. H. Huang, C. J. Wu, W. L. Lin, W. C. Chen, C. W. Chi, J. W. Lin, C. C. Chang, “Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet,” Thin Solid Films, vol. 519, pp. 5114-5117, 2011. [2.8] S. S. Hegedus, W. N. Shafarman, “Thin-Film Solar Cells : Device measurements and analysis,” Progress In Photovoltaics: Research And Applications, vol. 12, pp. 155-176, 2004. [2.9] S. Ishizuka, A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara, S. Niki, “Cu(In,Ga)Se2 thin film growth using a Se-radical beam source,” Solar Energy Materials and Solar Cells, vol. 93, pp. 792–796, 2009. [2.10] E. Chatterjee, S. P. S. Gupta, “Amorphous to crystalline phase transition of vapour grown selenium films,” Journal of Materials Science Letters, vol. 5, pp. 559-561, 1986. [2.11] O. Lundberg, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp. 77-88, 2003. [2.12] S. R. Kodigala, Cu(In1-xGax)Se2 based thin film solar cells, Elsevier, 2010. [2.13] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “Infuence of sodium on the growth of polycrystalline Cu(In,Ga)Se2,” Thin Solid Films, vol. 361-362, pp.161-166, 2000. [2.14] O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, “Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells,” Journal of Physics and Chemistry of Solids, vol. 64, pp. 1499-1504, 2003. [3.1] H. Liang, U. Avachat, W. Liu, J.V. Duren, M. Le, “CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere, Solid-State Electronics, vol. 76, pp. 95-100, 2012. [3.2] M. E. Beck1, A. Swartzlander-Guest, R. Matson, J. Keane, R. Nou, “CuIn(Ga)Se2-based devices via a novel absorber formation process,” Solar Energy Matererials and Solar Cells, vol. 64, pp.135-165, 2000. [3.3] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19•9%-efficient ZnO-CdS-CuInGaSe2 solar cell with 81•2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008. [3.4] C. Guillen, J. Herrero, “Semiconductor CuInSe2 formation by close-spaced selenization processes in vacuum,” Vacuum, vol. 67, pp. 659-664, 2002. [3.5] D. A. Cammack, K. Shahzad, T. Marshall, “Low‐temperature growth of ZnSe by molecular beam epitaxy using cracked selenium,” Applied Physics Letters, vol. 56, pp. 845-847, 1990. [3.6] H. Cheng, J. M. DePuydt, M. A. Haase, J. E. Potts, “Molecular‐beam epitaxy growth of ZnSe using a cracked selenium source,” Journal of Vacuum Science and Technology B, vol. 8 (2), pp. 181-186, 1990. [3.7] M. V. Yakushev, A. Zegadi, H. Neumann, P.A. Jones, A. E. Hill, R. D. Pilkington, M.A. Slifkin, R.D. Tomlinson, “Effect of plasma hydrogenation on the defect properties of CuInSe2 single crystals,” Crystal Research and Technology, vol. 29, pp. 427-437, 1994. [3.8] D. W. Lee, M. S. Seol, D. W. Kwak, J. S. Oh, J. H. Jeong , H. Y. Cho, “Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films,” Thin Solid Films, vol. 520, pp. 6382-6385, 2012. [3.9] K. Otte, G. Lippold, H. Neumann, A. Schindler, “Hydrogen in CuInSe2,” Journal of Physics and Chemistry of Solids, vol. 64, pp.1641-1647, 2003. [3.10] A. Salesse, A. Joullié, P. Calas, J. Nieto, F. Chevrier, Y. Cuminal, G. Ferblantier,P. Christol, “Surface passivation of GaInAsSb photodiodes with thioacetamide,” Physical Status Solidi C, vol. 4, pp. 1508-1515, 2007. [3.11] L. Kronik, U. Rau, J. F. Guillemoles, D. Braunger, H. W. Schock, D. Cahen, “Interface redox engineering of Cu(In,Ga)Se2-based solar cells: oxygen, sodium, and chemical bath effects”, Thin Solid Films, vol. 361-362, pp. 353-359, 2000. [3.12] R. C. Valderrama, P. J. Sebastián, M. M. Hernandez, J. P. Enriquez, S. A. Gamboa, “Studies on the electrochemical stability of CIGS in H2SO4”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 168, pp. 75-80, 2004. [4.1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19•9%-efficient ZnO-CdS-CuInGaSe2 solar cell with 81•2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008. [5.1] C. H. Huang, “Effects of junction parameters on Cu(In,Ga)Se2 solar cells,” Journal of Physics and Chemistry of Solids, vol. 69, pp.779-783, 2008. [5.2] J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, “Device modeling and simulation of the performance of Cu(In1-x,Gax)Se2 solar cells,” Solid-State Electronics, vol. 48, pp.73-79, 2004. [5.3] A. Bouloufa, K. Djessas, A. Zegadi, “Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D,” Thin Solid Films, vol. 515, pp.6285-6287, 2007. [5.4] M. A. M. Bhuiyan, M. S. Islam, A. J. Datta, “Modeling, Simulation and Optimization of High Performance CIGS Solar Cell,” International Journal of Computer Applications, vol. 57(16), pp.26-30, 2012. [5.5] R. Kamada,W. N. Shafarman, R. W. Birkmire, “Cu(In,Ga)Se2 film formation from selenization of mixed metal/metal-selenide precursors,” Solar Energy Materials and Solar Cells, vol. 94, pp.451-456, 2010. [5.6] O. Lundberg,y, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp.77-88, 2003. [5.7] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013. [5.8] http://www.ampsmodeling.org/examplesGeneral.html [5.9] D. Schmid, M. Ruckh, H. W. Schock, “A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell struvtures,” Applied Physics A: Materials Science and Processing, vol. 41, p.281, 1996. [5.10] M. Gloeckler, A. L. Fahrenbruch, J. R. Sites, “Numerical modeling of CIGS and CdTe solar: setting the baseline,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, p.491, 2003. [5.11] G. Hanna, A. Jasenek, U. Rau, H. W. Schock, “Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2,” Thin Solid Films, vol.387, pp.71-73, 2001. [5.12] R. Kamada, W. N. Shafarman, R. W. Birkmire, “Cu(In,Ga)Se2 film formation from selenization of mixed metal/metal-selenide precursors,” Solar Energy Materials and Solar Cells, vol. 94, pp.451-456, 2010. [5.13] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013.
|