跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何柏慶
研究生(外文):Ho, Po-Ching
論文名稱:氫、氧與硫對銅銦鎵硒薄膜太陽能電池效能之影響以及AMPS-1D之元件模擬
論文名稱(外文):Effects of Hydrogen, Oxygen and Sulfur on The Performance of Cu(In,Ga)Se2 Thin Film Solar Cells and Device Modeling by AMPS-1D Simulation
指導教授:張國明
指導教授(外文):Chang, Kow-Ming
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:118
中文關鍵詞:薄膜太陽能大氣電漿表面處理銅銦鎵硒
外文關鍵詞:Thin film solar cellsatmospheric plasmasurface treatmentCIGS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銅銦鎵硒薄膜太陽能電池屬於第二代太陽能電池,其低成本、高效率有望在未來取代目前市佔率最高之多晶矽太陽能電池。唯其因材料為四元合金,成長控制不易以及薄膜介面與內部缺陷較多(跟矽晶材料相比),使得大面積生產良率受到很大的挑戰。因此了解此材料複雜的缺陷組成並且使用合適且低成本的硒化與鈍化方式為提升電池效率和降低電池成本之方法。
本論文旨在探討氫元素、氧元素的摻雜與硫元素的表面鈍化處理對銅銦鎵硒薄膜太陽能電池效能之影響,並且做一維光伏元件模擬針對銅銦鎵硒吸收層、銅銦鎵硒與硫化鎘介面缺陷密度以及二硒化鉬過渡層(在銅銦鎵硒與鉬背電極之間)作探討。
首先,藉由新穎式大氣電漿輔助化學沉積系統在次大氣壓力下(150 Torr)做硒薄膜前驅層之沉積以及對銅銦鎵金屬前驅層進行不同程度之氧化,藉此探討氧摻雜對元件之影響。大氣壓電漿技術具有低溫、低成本、適合大面積化等競爭優勢,可期望於未來商業化應用。大氣電漿產生的OH-物種在銅銦鎵金屬前驅層表面形成不同程度之氧化態,這在硒化過程中影響銅銦鎵硒吸收層氧的摻雜量與硒元素、鎵元素的擴散。適當的氧摻雜對硒空缺(施體缺陷)的鈍化有正面影響,可提升元件有效電洞載子密度、降低吸收層串聯電阻 ; 此外,硒空缺所造成的金屬空缺也影響鎵、銦元素擴散,最佳化條件下可在吸收層中形成一均勻的鎵分布。硒擴散速率則受到金屬氧化層之影響,適當條件下可形成較薄的二硒化鉬過渡層來降低背電極串聯電阻。較薄的二硒化鉬層也使得鈉元素容易由基板擴散入吸收層,對銅占銦之錯位缺陷鈍化而使元件有效電洞載子密度增加。氧摻雜的最佳元件參數: 電池效率為8.9 %、開路電壓為0.454 V、短路電流為35.7 mA/cm2、填充因子為0.547。
其次,研究氫氣/氮氣混合氣體作為硒蒸氣之載氣對銅銦鎵金屬前驅層進行硒化,氫氣作為鈍化材料內部缺陷的摻雜來源。混合載氣比例在氫氣/(氫氣+氮氣)為15%時,元件有效電洞載子密度提升近2倍達到5.461  1015 cm-3,此對於電池整體的串聯電阻降低以及短路電流密度增加有很大貢獻。此外,藉由氫氣對銅空缺(受體缺陷)鈍化,增加n型表層厚度,使得空乏區增大,則可產生更多載子。氫摻雜的最佳元件參數: 電池效率為10.7 %、開路電壓為0.507 V、短路電流為33.8 mA/cm2、填充因子為0.625。
最後,銅銦鎵硒吸收層表面鈍化使用低成本的化學水域法作硫化處理。藉由硫元素對吸收層表面的硒空缺進行鈍化,降低銅銦鎵硒與硫化鎘介面複合中心缺陷密度而提升載子生命週期。氧摻雜與氫摻雜之最佳試片進行硫元素表面鈍化後,元件效能分別提升7.9 % (電池效率為9.6 %)和10.3 % (電池效率為11.8 %)。
銅銦鎵硒薄膜光伏元件使用AMPS-1D的模擬結果顯示: (i) 吸收層的能隙分布對元件效率影響很大,效率要高的準則為吸收層表層能隙要大、能隙大於1.15eV、吸收層能隙分布為一均質分布或V形狀為最佳、降低深層缺陷密度。 (ii) 銅銦鎵硒與硫化鎘介面缺陷密度大於1018 cm-3時,電池效率開始降低,尤其是填充因子減少幅度最大。 (iii) 二硒化鉬過渡層的能隙低於1.3 eV時,電池背向電場效應減弱造成電池效率下降。

Cu(In,Ga)Se2 (CIGS) thin-film solar cell was second generation solar cell, it was an alternative to poly-Si solar cells due to its low-cost and high cell efficiency in the future. The mass production of large-area CIGS solar modules faced the challenge owing to However, the mass production of large-area CIGS solar modules faced the challenge owing to the deviation from stoichiometry in the CIGS thin film and there are a lot of non-stoichiometric defects at the interface of CIGS/CdS and inside CIGS bulk (as compared to poly-Si). Therefore, it is essential to understand complicated intrinsic defects at the CIGS surface and bulk, and then adopted corresponding low-cost passivation methods and employed low-cost selenization process to enhancement of cell efficiency and decreasing fabrication cost.
In this thesis, we investigated effects of hydrogen, oxygen and sulfur on the performance of CIGS solar cells, and device modeling using AMPS-1D focused on the study of the impact on performance caused by various CIGS band-gap profile, interface defect density (CIGS/CdS) and band-gap of MoSe2 transition layers.
First, novel atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) is proposed to deposit Se precursors (at 150 Torr) and oxidize the surface of Cu3Ga/In (CIG) precursors, this was employed to investigate the effect of oxygen on the conversion-efficiency of CIGS solar cells. The AP-PECVD offers several competitive advantages, such as low temperature process, low cost and suitable for large area application. It is expected for commercial applications in the future. CIG/Se precursors were oxidized by OH- species produced using atmospheric pressure plasma, and oxygen has an influence on Se and Ga diffusion in the CIGS absorber. Optimal oxygen inclusion of CIG/Se precursors was beneficial to passivate donor-like Se vacancies (VSe) by OSe during CIGS formation process, and this resulted in the enhancement of electrical properties (effective hole carrier concentration and series resistance) of devices. The existence of VSe also induced metal vacancies, which resulted in homogeneous Ga diffusion in CIGS thin films at optimal condition. A metal oxide formed at the interface of CIG/Se precursors has an effect on Se diffusion rate and MoSe2-layed thickness during selenization process. Thin MoSe2 layer led to low series resistance of devices and facilitated Na diffusion from soda-lime glass at high temperature (>550 degree). The best performance of solar cell made using oxygenation CIGS absorber: cell efficiency (Eff.) is 8.9 %, Voc is 0.454 V, Jsc is 35.7 mA/cm2 and FF is 0.547.
Second, the effect of hydrogen on suppression of CIGS defects was investigated using selenization source of non-toxic Se vapor carried by N2/H2 mixed gas. Hydrogen could passivate acceptor-like Cu vacancies (VCu) to increase n-type region of CIGS thin films and widen depletion region. A two-fold increase in effective hole carrier concentration (5.461 x 10^15 cm-3) of the CIGS solar cell achieved at H2/(H2+N2) gas flow rate ratio of 15 %, and this led to lower series resistance and increasing Jsc of the solar cell. The best performance of solar cell made using hydrogenation CIGS absorber: cell efficiency is 10.7 %, Voc is 0.507 V, Jsc is 33.8 mA/cm2 and FF is 0.625.
Third, low-cost sulfur-containing acid chemical bath deposition (CBD) method was used to passivate CIGS surface. Se vacancies at the CIGS surface were passivated by sulfur ions (e.g. S2-) to decrease defects at the interface of CIGS/CdS layers and increase lifetime of carrier. After sulfur treatment, cell efficiencies of solar cell fabricated using oxygenation and hydrogenation CIGS absorber enhanced by 7.9 % (Eff. is 9.6 %) and 10.3 % (Eff. is 11.8 %), respectively.
 Finally, the CIGS solar cell modeling using AMPS-1D revealed: (i) Large band-gap (Eg) of CIGS absorber (>1.15 eV), uniform or V-shape CIGS Eg profile and low deep-level defects of CIGS bulk could reaches high cell efficiency. (ii) The cell efficiency began to decreasing as interface defect density (at the interface of CIGS/CdS layers) was above 1018 cm-3. (iii) The cell efficiency began to decreasing as Eg of MoSe2 layer was below 1.3 eV.

Abstract (in Chinese)……………………………………………………………………………………………………i
Abstract (in English) ……………………………………………………………………………………………iii
Acknowledgement……………………………………………………………………………………………………………………v
Contents……………………………………………………………………………………………………………………………………vi

Chapter 1 Introduction
1.1 Forward……………………………………………………………………………………………………………………1
1.2 The market of photovoltaic solar cells…………………………………2
1.3 Overview of I-III-VI2 thin film solar cells……………………4
1.4 The operation of solar cells…………………………………………………………11
1.4.1 Solving solar cell equations…………………………………………………………11
1.4.2 PV device characteristics…………………………………………………………………14
1.5 Background of atmospheric pressure plasma………………………15
1.6 Motivation…………………………………………………………………………………………………………16
1.7 Thesis Organization…………………………………………………………………………………17

Chapter 2 Oxygenated Cu(In,Ga)Se2 Thin Films Formed by Selenization of Metal Precursors with Intentional Inclusion of Oxygen
2.1 Introduction……………………………………………………………………………………………………34
2.2 Experimental procedure…………………………………………………………………………35
2.3 Results and discussion…………………………………………………………………………37
2.3.1 Preparation of various oxygen level of CIG/Se precursors……………………………………………………………………………………………………………………………37
2.3.2 The effect of oxygen treatment……………………………………………………39
2.3.3 CIGS surface passivation (I)…………………………………………………………41
2.4 Conclusions………………………………………………………………………………………………………42

Chapter 3 Hydrogenated Cu(In,Ga)Se2 Thin Films Formed Using Selenization Source of Non-toxic Se Vapor Carried by N2/H2 Mixed Gas
3.1 Introduction……………………………………………………………………………………………………60
3.2 Experimental procedure…………………………………………………………………………61
3.3 Results and discussion…………………………………………………………………………62
3.3.1 The effect of hydrogen treatment………………………………………………62
3.3.2 CIGS surface passivation (II)………………………………………………………64
3.4 Conclusions………………………………………………………………………………………………………66

Chapter 4 Comparison of Experimental Results
4.1 Introduction……………………………………………………………………………………………………77
4.2 Results and discussion…………………………………………………………………………77
4.3 Conclusions………………………………………………………………………………………………………79

Chapter 5 Device Modeling of Cu(In,Ga)Se2 Solar Cells by AMPS-1D Simulation
5.1 Introduction…………………………………………………………………………………………………89
5.2 Device model…………………………………………………………………………………………………90
5.3 Results and discussion………………………………………………………………………92
5.3.1 The effect of CdS/CIGS interface defect density……92
5.3.2 The effects of energy band gap profile and thickness of CIGS absorber…………………………………………………………………………………………………………92
5.3.3 The BSF effect on interface of CIGS/MoSe2……………………93
5.4 Conclusions……………………………………………………………………………………………………94

Chapter 6 Conclusions and Future work…………………………………………108
References…………………………………………………………………………………………………………………………110

[1.1] http://en.wikipedia.org/wiki/Kyoto_Protocol
[1.2] http://www.nrel.gov/docs/fy14osti/60894.pdf
[1.3]http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modules- dominate-solar-pv-industry-2014
[1.4] http://www.solarbuzz.com/tw/reports/pv-equipment-quarterly
[1.5] http://about.bnef.com/summit/content/uploads/sites/3/2013/11/BNEF_2012_03_
19_University_Solar_Power.pdf
[1.6] G. Makrides, B. Zinsser, G. E. Georghiou, M. Schubert, J. H. Werner, “Outdoor efficiency of different photovoltaic systems installed in Cyprus and Germany,” 33th IEEE Photovoltaic Specialists Conference (PVSC) , San Diego, pp. 1-6, 2008.
[1.7] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19.9%-effcient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[1.8] N.A.K. Abdul-Hussein, “Electrical Properties of RF Sputtered Thin Films of CuInSe2 (I),” Crystal Research and Crystal Technology, vol. 20, pp. 509-514, 1985.
[1.9] F. R. White, A.H. Clark, M.C. Graf, L.L. Kazmerski, “Growth of CuInSe2 on CdS using Molecular Beam Epitaxy,” Journal of Applied Physics, vol. 50, pp. 544-545, 1979.
[1.10] S. H. Yoon, S. Hwan, “ Preparation of CuInSe2 Thin-Films through Metal Organic Chemical Vapor Deposition Method by using Di-μ-Methylselenobis and Bis Copper(II) Precursors,” Thin Solid Films ,vol. 515, pp. 1544-1547, 2006.
[1.11] A. A. Akl, H.H. Afify, “Growth, Microstructure, Optical and Electrical Properties of Sprayed CuInSe2 Polycrystalline Films,” Materials Research Bulletin, vol. 43, pp. 1539-1548, 2008.
[1.12] J. F. Guillemoles, “Recrystallization of Electrodeposited Copper Indium Di-Selenide Thin-Films in an Atmosphere of Elemental Selenium,” Advanced Materials, vol. 6, pp. 376-379, 1994.
[1.13] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, “Low-cost CIGS solar cells by paste coating and selenization,” Thin Solid Films, vol. 480, pp. 486-490, 2005.
[1.14] M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, “CIS and CIGS layers from selenized nanoparticle precursors,” Thin Solid Films, vol. 432, pp. 58-62, 2003.
[1.15] H. Liang, U. Avachat, W. Liu, J. v. Duren, M. Le, “CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere,” Solid-State Electronics, vol. 76, pp. 95-100, 2012.
[1.16] T. Godecke, T. Haalboom, F. Ernst, “Phase equilibria of Cu-In-Se I. Stable states and nonequilibrium state of the In2Se3-Cu2Se subsystem,” Z. Metallkd. vol. 91, pp. 622–634, 2000.
[1.17] W. Liu, J.G. Tian, “In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system,” Thin Solid Films, vol. 519, pp. 244–250, 2010.
[1.18] C. Guillen, J. Herrero, “Semiconductor CuInSe2 formation by close-spaced selenization processes in vacuum,” Vacuum, vol. 67, pp. 659-664., 2002.
[1.19] O. Lundberg,y, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp.77-88, 2003.
[1.20] S. B. Zhang, Su-Huai Wei, Alex Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconduct,” Physical Review B, vol. 57(16), pp.9642-9655, 1998.
[1.21] U. Rau, H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges,” Applied Physics A, vol. 69, pp.131-147, 1999.
[1.22] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “Infuence of sodium on the growth of polycrystalline Cu(In,Ga)Se2,” Thin Solid Films, vol. 361-362, pp.161-166, 2000.
[1.23] W. J. Yin, Y. Wu, R. Noufi, M. A. Jassim, Y. Yan, “Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2,” Applied Physics Letters, vol. 102, p.193905-1, 2013.
[1.24] L. Kronik, D. Cahen, H. W. Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance,” Advanced Materials, vol. 10(1), pp. 31-36, 1998.
[1.25] K. Otte, G. Lippold, H. Neumann, A. Schindler, “Hydrogen in CuInSe2,” Journal of Physics and Chemistry of Solids, vol. 64, pp.1641-1647, 2003.
[1.26] D.W. Lee, M.S. Seol, D.W. Kwak, J.S. Oh, J.H. Jeong, H.Y. Cho, “Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films,” Thin Solid Films, vol. 520, pp.6382-6385, 2012.
[1.27] Z.Q. Li, J.H. Shi, D.W. Zhang, Q.Q. Liu, Z. Sun, Y.W. Chen, Z. Yang, S.M. Huang, “Cu(In,Ga)Se2 solar cells with double layered buffers grown by chemical bath deposition,” Thin Solid Films, vol. 520, pp. 9642-9655, 2011.
[1.28] D. Dwyer, R. Sun, H. Efstathiadis, P. Haldar, “Characterization of chemical bath deposited buffer layers for thin film solar cell applications,” Physical Status Solidi A, vol. 207(10), pp. 2272-2278, 2010.
[1.29] J. Pouzet, J.C. Bernede, “MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films,” Revue de Physique Appliquee, vol. 25, p.807-15, 1990.
[1.30] H. Park, S. C. Kim, S. H. Lee, J. Koo, S. H. Lee, C. W. Jeon, S. Yoon, W. K. Kim, “Effect of precursor structure on Cu(InGa)Se2 formation by reactive annealing,” Thin Solid Films, vol. 519, pp. 7245-7249, 2011.
[1.31] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013.
[1.32] X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, R. F. Hicks , “High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride,” Plasma Sources Science and Technology, vol. 14, pp. 412-418, 2005.
[1.33] G. R. Nowling, S. E. Babayan, V. Jankovic, R. F. Hicks, “Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure,” Plasma Sources Science and Technology, vol. 11, pp. 97-103, 2002.
[1.34] C. Huang, C.H. Liu, S.Y. Wu, “Surface characterization of the SiOx films prepared by a remote atmospheric pressure plasma jet,” Surface and Interface Analysis, vol. 41(1), pp. 44-48, 2009.
[1.35] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,” IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[2.1] I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. K. Metzger, M. A.Contreras, “Required material properties for high-efficiency CIGS modules,” Proceedings of SPIE, vol. 7409, p.74090M-1, 2009.
[2.2] L. Kronik, D. Cahen, H. W. Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance,” Advanced Materials, vol. 10(1), pp. 31-36, 1998.
[2.3] S. B. Zhang, S. H. Wei, A. Zunger, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Physical Review B, vol. 57(16), pp. 9642-9656, 1998.
[2.4] U. Rau, D. Braunger, R. Herberholz, H. W. Schock, J. F. Guillemoles, L. Kronik, D. Cahen, “Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices,” Journal of Applied Physics, vol. 86, pp. 497-505,1999.
[2.5] W. J. Yin, Y. Wu, R. Noufi, M. A. Jassim, Y. Yan, “Defect segregation at grain boundary and its impact on photovoltaic performance of CuInSe2,” Applied Physics Letters, vol. 102, p. 193905-1, 2013.
[2.6] K. M. Chang, P. C. Ho, S. H. Yu, J. M. Hsu, K. H. Yang, C. J. Wu, C. C. Chang, “Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells,” Applied Surface Science, vol. 276, pp. 756-760, 2013.
[2.7] K. M. Chang, S. H. Huang, C. J. Wu, W. L. Lin, W. C. Chen, C. W. Chi, J. W. Lin, C. C. Chang, “Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet,” Thin Solid Films, vol. 519, pp. 5114-5117, 2011.
[2.8] S. S. Hegedus, W. N. Shafarman, “Thin-Film Solar Cells : Device measurements and analysis,” Progress In Photovoltaics: Research And Applications, vol. 12, pp. 155-176, 2004.
[2.9] S. Ishizuka, A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara, S. Niki, “Cu(In,Ga)Se2 thin film growth using a Se-radical beam source,” Solar Energy Materials and Solar Cells, vol. 93, pp. 792–796, 2009.
[2.10] E. Chatterjee, S. P. S. Gupta, “Amorphous to crystalline phase transition of vapour grown selenium films,” Journal of Materials Science Letters, vol. 5, pp. 559-561, 1986.
[2.11] O. Lundberg, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp. 77-88, 2003.
[2.12] S. R. Kodigala, Cu(In1-xGax)Se2 based thin film solar cells, Elsevier, 2010.
[2.13] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “Infuence of sodium on the growth of polycrystalline Cu(In,Ga)Se2,” Thin Solid Films, vol. 361-362, pp.161-166, 2000.
[2.14] O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, “Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells,” Journal of Physics and Chemistry of Solids, vol. 64, pp. 1499-1504, 2003.
[3.1] H. Liang, U. Avachat, W. Liu, J.V. Duren, M. Le, “CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere, Solid-State Electronics, vol. 76, pp. 95-100, 2012.
[3.2] M. E. Beck1, A. Swartzlander-Guest, R. Matson, J. Keane, R. Nou, “CuIn(Ga)Se2-based devices via a novel absorber formation process,” Solar Energy Matererials and Solar Cells, vol. 64, pp.135-165, 2000.
[3.3] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19•9%-efficient ZnO-CdS-CuInGaSe2 solar cell with 81•2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[3.4] C. Guillen, J. Herrero, “Semiconductor CuInSe2 formation by close-spaced selenization processes in vacuum,” Vacuum, vol. 67, pp. 659-664, 2002.
[3.5] D. A. Cammack, K. Shahzad, T. Marshall, “Low‐temperature growth of ZnSe by molecular beam epitaxy using cracked selenium,” Applied Physics Letters, vol. 56, pp. 845-847, 1990.
[3.6] H. Cheng, J. M. DePuydt, M. A. Haase, J. E. Potts, “Molecular‐beam epitaxy growth of ZnSe using a cracked selenium source,” Journal of Vacuum Science and Technology B, vol. 8 (2), pp. 181-186, 1990.
[3.7] M. V. Yakushev, A. Zegadi, H. Neumann, P.A. Jones, A. E. Hill, R. D. Pilkington, M.A. Slifkin, R.D. Tomlinson, “Effect of plasma hydrogenation on the defect properties of CuInSe2 single crystals,” Crystal Research and Technology, vol. 29, pp. 427-437, 1994.
[3.8] D. W. Lee, M. S. Seol, D. W. Kwak, J. S. Oh, J. H. Jeong , H. Y. Cho, “Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films,” Thin Solid Films, vol. 520, pp. 6382-6385, 2012.
[3.9] K. Otte, G. Lippold, H. Neumann, A. Schindler, “Hydrogen in CuInSe2,” Journal of Physics and Chemistry of Solids, vol. 64, pp.1641-1647, 2003.
[3.10] A. Salesse, A. Joullié, P. Calas, J. Nieto, F. Chevrier, Y. Cuminal, G. Ferblantier,P. Christol, “Surface passivation of GaInAsSb photodiodes with thioacetamide,” Physical Status Solidi C, vol. 4, pp. 1508-1515, 2007.
[3.11] L. Kronik, U. Rau, J. F. Guillemoles, D. Braunger, H. W. Schock, D. Cahen, “Interface redox engineering of Cu(In,Ga)Se2-based solar cells: oxygen, sodium, and chemical bath effects”, Thin Solid Films, vol. 361-362, pp. 353-359, 2000.
[3.12] R. C. Valderrama, P. J. Sebastián, M. M. Hernandez, J. P. Enriquez, S. A. Gamboa, “Studies on the electrochemical stability of CIGS in H2SO4”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 168, pp. 75-80, 2004.
[4.1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19•9%-efficient ZnO-CdS-CuInGaSe2 solar cell with 81•2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[5.1] C. H. Huang, “Effects of junction parameters on Cu(In,Ga)Se2 solar cells,” Journal of Physics and Chemistry of Solids, vol. 69, pp.779-783, 2008.
[5.2] J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, T. J. Anderson, “Device modeling and simulation of the performance of Cu(In1-x,Gax)Se2 solar cells,” Solid-State Electronics, vol. 48, pp.73-79, 2004.
[5.3] A. Bouloufa, K. Djessas, A. Zegadi, “Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D,” Thin Solid Films, vol. 515, pp.6285-6287, 2007.
[5.4] M. A. M. Bhuiyan, M. S. Islam, A. J. Datta, “Modeling, Simulation and Optimization of High Performance CIGS Solar Cell,” International Journal of Computer Applications, vol. 57(16), pp.26-30, 2012.
[5.5] R. Kamada,W. N. Shafarman, R. W. Birkmire, “Cu(In,Ga)Se2 film formation from selenization of mixed metal/metal-selenide precursors,” Solar Energy Materials and Solar Cells, vol. 94, pp.451-456, 2010.
[5.6] O. Lundberg,y, M. Bodegard, J. Malmstrom, L. Stolt, “Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance,” Progress In Photovoltaics: Research And Applications, vol. 11, pp.77-88, 2003.
[5.7] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013.
[5.8] http://www.ampsmodeling.org/examplesGeneral.html
[5.9] D. Schmid, M. Ruckh, H. W. Schock, “A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell struvtures,” Applied Physics A: Materials Science and Processing, vol. 41, p.281, 1996.
[5.10] M. Gloeckler, A. L. Fahrenbruch, J. R. Sites, “Numerical modeling of CIGS and CdTe solar: setting the baseline,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, p.491, 2003.
[5.11] G. Hanna, A. Jasenek, U. Rau, H. W. Schock, “Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2,” Thin Solid Films, vol.387, pp.71-73, 2001.
[5.12] R. Kamada, W. N. Shafarman, R. W. Birkmire, “Cu(In,Ga)Se2 film formation from selenization of mixed metal/metal-selenide precursors,” Solar Energy Materials and Solar Cells, vol. 94, pp.451-456, 2010.
[5.13] C. K. Ghosh, D. Sarkar, M. K. Mitra, K. K. Chattopadhyay, “Equibiaxial strain tunable electronic structure and optical properties of bulk and monolayer MoSe2,” Journal of Physics D: Applied Physics, vol. 46, pp.395304-1-395304-11, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用含硫酸性溶液作銅銦鎵硒吸收層表面鈍化之研究
2. 用混合氮氧氣體及電漿氟化與氮化處理技術對矽鍺奈米線於生物感測試劑之靈敏度研究與特性
3. 使用ISPP 量測方法研究改善NAND快閃記憶體可靠度問題
4. 研究雙重電漿改良之高靈敏度矽鍺奈米線生物感測元件
5. 氫還原暨硫化對硒化銅銦鎵太陽能電池的影響
6. 使用定位同步技術之非同步電路自動化流程設計
7. 利用鈍化層與雷射退火改善由大氣電漿輔助化學氣相沉積製備氧化鉿/氧化鋁/銦鎵鋅氧薄膜電晶體之電性研究
8. 雙層結構硒膜應用於銅銦鎵硒吸收層之兩階段硒化研究
9. 低溫製程技術處理於低溫多晶矽薄膜電晶體及大氣常壓電漿輔助化學氣相沉積製備銦鎵鋅氧薄膜電晶體之探討
10. 光激發載子於GaAsN/GaAs量子井 電滯曲線的影響
11. 氮電漿處理高介電係數介電質二氧化鋯應用於大氣壓電漿輔助化學氣相沉積製備銦鎵鋅氧薄膜電晶體之研究
12. 考慮執行緒平行度且快取記憶體資源並應用於通用 圖形處理器之執行緒排程演算法
13. 使用動態邊界與元件合併移除時序分析中共同路徑悲觀性之研究
14. 利用大氣壓電漿輔助化學氣相沉積製備不同比例之銦鎵鋅氧薄膜電晶體與雷射退火處理之電性研究
15. 應用雙層高介電質材料氧化鋯/氧化鋁鑭於製備大氣 噴射式電漿沉積氧化銦鎵鋅薄膜電晶體之特性研究