|
[1] Chang et al, International Conference on Solid State and Integrated Circuit Technology, pp. 428-431, 1998 [2] Christiensen et al, International Conference on Computer Modeling and Simulation, pp. 534-539, 2011 [3] D. Kahng and S.M. Sze, "A floating-gate and its application to memory devices," The Bell System Technical Journal, vol. 46, no. 4, 1967, pp. 1288-1295 [4] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [5] T. Yuan Heng, H. Chia-En, C. H. Kuo, Y. D. Chih, and L. Chrong Jung, "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [6] S. Dong-jun, P. Jubong, L. Nodo, H. Musarrat, J. Seungjae, C. Hyejung, L. Joonmyoung, J. Minseok, L. Wootae, P. Sangsu, K. Seonghyun, J. Yun Hee, Y. Lee, M. Sung, D. Kil, Y. Hwang, S. Chung, S. Hong, J. Roh, and H. Hyunsang, "Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [7] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, "Flash memory cells - An overview," Proceedings of the IEEE, vol. 85, pp. 1248-1271, Aug 1997. [8] J. De Blauwe, "Nanocrystal nonvolatile memory devices," IEEE Transactions on Nanotechnology, vol. 1, pp. 72-77, Mar 2002. [9] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to Flash memory," Proceedings of the IEEE, vol. 91, pp. 489-502, Apr 2003. [10] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New ultra high density EPROM and Flash with NAND structure cell,” in IEDM Tech. Dig., 1987, pp. 552-555. [11] J. F. Scott and C. A. Paz de Araujo, “Ferroelectric memories,” Science, vol. 246, pp. 1400-1405, Dec. 1989 [12] S. V. Pietambaram, N. D. Rizzo, R. W. Dave, J. Goggin, K. Smith, J. M. Slaughter, and S. Tehrani, "Low-power switching in magnetoresistive random access memory bits using enhanced permeability dielectric films," Applied Physics Letters, vol. 90, Apr 2007. [13] J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," IEEE Transactions on Magnetics, vol. 32, pp. 3165-3184, Jul 1996. [14] Gary A. Prinz, “Magnetoelectronics,” Science, vol. 282, pp. 1660-1663, Nov. 1996 [15] Albert Fert, “The CNRS has attributed this year's "Medaille d'Or" (Golden Medal) to the physicist Albert Fert, ” Press release, Oct. 2003 [16] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage," Nature materials, vol. 6, pp. 824-832, Nov 2007. [17] H.-S. P. Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Rajendran, Mehdi Asheghi, Kenneth E.Goodson, "Phase change memory," Proceedings of the IEEE, vol. 98, pp. 2201-2227, Dec. 2010. [18] H.-S. P. Wong et al, Proc. IEEE, vol. 100, no. 6, pp. 1951–1970, 2012 [19] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," nature materials, vol. 5, pp. 312-320, Apr 2006. [20] K. Szot, R. Dittmann, W. Speier, and R. Waser, "Nanoscale resistive switching in SrTiO3 thin films," Physica Status Solidi-Rapid Research Letters, vol. 1, pp. R86-R88, Mar 2007. [21] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, 2008. [22] Y. M. Kim and J. S. Lee, “Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices,” J. Appl. Phys., vol. 104, 114115, Dec. 2008. [23] L. Goux, Y. Y. Chen, L. Pantisano, X. P. Wang, G. Groeseneken, M. Jurczak, and D. J. Wouters, “On the gradual unipolar and bipolar resistive switching of TiN\HfO2\Pt memory systems,” Electrochem. Solid State Lett., vol. 13, pp. G54–G56, 2010. [24] J. S. Choi, J. S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S. O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, “Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes,” Appl. Phys. Lett., vol. 95, 022109, Jul. 2009. [25] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, pp. 5655–5657, Dec. 2004. [26] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, 262907, Jun. 2005. [27] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, 223510, Nov. 2007. [28] C. Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366–368, May 2007. [29] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures,” Electrochem. Solid State Lett., vol. 9G343–G346, 2006. [30] C. Y. Lin, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable resistive switching in Al2O3 memory thin films,” J. Electrochem. Soc., vol. 154, pp. G189–G192, 2007. [31] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. Technol., vol. 23, 075019, Jul. 2008. [32] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, 022110, Jan. 2008. [33] L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-Eon, L. Changbum, K. Kihwan, X. Wenxu, G. Stefanovich, L. Jung-Hyun, C. Seok-Jae, K. Yeon-Hee, L. Chang-Soo, P. Jong-Bong, and Y. In-Kyeong,“2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 771-774. [34] Ming-Chi Wu, Yi-Wei Lin, Wen-Yueh Jang, Chen-Hsi Lin, and Tseung-Yuen Tseng, “Low-Power and Highly Reliable Multilevel Operation in ZrO2 1T1R RRAM,” IEEE Electron Device Letters, vol. 32, pp. 1026-1028, 2011. [35] S. J. Song, K. M. Kim, G. H. Kim, M. H. Lee, J. Y. Seok, R. Jung, and C. S. Hwang, “ Identification of the controlling parameter for the set-state resistance of a TiO2 resistive switching cell,” Appl. Phys. Lett., vol. 96, no. 11, p. 112904, 2009. [36] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and D.J. Wouters, “Control of filament size and reduction of reset current below 10 μA in NiO resistance switching memories,” Solid State Electron., vol. 58, no. 1, pp. 42-47, 2011. [37] R. E. Thurstans and D. P. Oxley, "The electroformed metal-insulator-metal structure: a comprehensive model," Journal of Physics D-Applied Physics, vol. 35, pp. 802-809, Apr 2002. [38] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, "Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory," Advanced Materials, vol. 19, pp. 2232, Sep 2007. [39] YingTao Li, ShiBing Long, Qi Liu, HangBing Lü, and Su Liu, Ming Liu, “An overview of resistive random access memory devices,” Chinese Science Bulletin, vol. 56, pp.3072-3078, 2011 [40] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, Article ID 578168 [41] Meng-Han Lin, Ming-Chi Wu, Chen-Hsi Lin, and Tseung-Yuen Tseng, “Effects of Vanadium Doping on Resistive Switching Characteristics and Mechanisms of SrZrO3-Based Memory Films,” IEEE TED, vol. 57, pp.1801-1808, 2010 [42] Guo, X., Schindler, C., Menzel, S. &; Waser, R. “Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems,” Appl. Phys. Lett. Vol. 91, 133513 (2007). [43] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, “Redox-Based Resistive Switching Memories -Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater. Vol. 21, pp.2632-2663, 2009 [44] Yuchao Yang and Wei Lu, “Nanoscale resistive switching devices: mechanisms and modeling,” Nanoscale, vol. 5, pp. 10076-10092, 2013 [45] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices," IEEE Transactions on Electron Devices, vol. 56, pp. 193-200, 2009. [46] Huan-Lin Chang et al, IEEE International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 1-2, 2011 [47] Yu-Sheng Chen et al, IEEE Electron Device Letters, Vol. 32, no. 3, 2011 [48] Yu-Sheng Chen et al, IEEE Electron Device Letters, Vol. 32, no. 11, 2011 [49] H. Y. Lee et al, IEEE Electron Device Letters, Vol. 31, no. 1, 2010 [50] H. Y. Lee et al, IEDM Tech. Dig., pp. 297–300, 2008 [51] Jean-Charles Dupin et al, Phys. Chem. Chem. Phys., Vol. 2, 1319-1324, 2000 [52] J. Joshua Yang, M.-X. Zhang, Matthew D. Pickett, Feng Miao, John Paul Strachan et al., " Engineering nonlinearity into memristors for passive crossbar applications," Appl. Phys. Lett., vol. 100, 113501, Apr 2012. [53] J. Joshua Yang, Matthew D. Pickett, Xuema Li, Douglas A. A. Ohlberg, Duncan R. Stewart and R. Stanley Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol. 3, 429- 433, Jun 2008 [54] Seong-Geon Park, Min Kyu Yang, Hyunsu Ju, Dong-Jun Seong, Jung Moo Lee, Eunmi Kim, Seungjae Jung, Lijie Zhang, Yoo Cheol Shin, In-Gyu Baek, Jungdal Choi, Ho-Kyu Kang, and Chilhee Chung, “A Non-Linear ReRAM Cell with sub-1μA Ultralow Operating Current for High Density Vertical Resistive Memory (VRRAM),” in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.8.1-20.8.4. [55] Doo-In Kim, Jaesik Yoon, Ju-Bong Park, Hyunsang Hwang, Young Moon Kim et al., " Nonlinear current-voltage behavior of the isolated resistive switching filamentary channels in CuC nanolayer," Applied Physics Letters, vol. 98, 152107, Apr 2012. [56] Doo Seok Jeong, Byung-ki Cheong, Hermann Kohlstedt, “Pt/Ti/Al2O3/Al tunnel junctions exhibiting electroforming-free bipolar resistive switching behavior,” Solid State Electron., vol.63, pp. 1-4, 2011 [57] H. Choi, J. Yi, S. Hwang, S. Lee, S. Song, S. Lee, J. Lee, D. Son, J. Park, S. J. Kim, J. Y. Kim, S. Lee, J. Moon, C. Kim, J. Park, M. Joo, J. Roh, S. Park, S. W. Chung, J. Rhee, and S. J. Hong, “The effect of tunnel barrier at resistive switching device for low power memory applications,” presented at the IEEE Int. Memory Workshop, 2011, pp. 1–4. [58] Seung Jae Baik and Koeng Su Lim, "Bipolar resistance switching driven by tunnel barrier modulation in TiOx/AlOx bilayered structure," Applied Physics Letters, vol. 97, 072109, Apr 2010. [59] Bo Soo Kang; Dongjae Cha; Sung Joo Lee; Sang Chul Na; Dong Wook Kim, ”Resistive Switching and Transport Characteristics of Cu/a-Si/Si Devices,” Journal of the Korean Physical Society, vol. 58, pp. 1156-1159, May 2011 [60] Florian Lentz, Bernd Roesgen, Vikas Rana, Dirk J. Wouters, and Rainer Waser,” Current Compliance-Dependent Nonlinearity in TiO2 ReRAM,” IEEE Electron Device Letters, vol. 34, pp.996-998, August 2013 [61] Sheng-Yu Wang, Dai-Ying Lee, Tseung-Yuen Tseng and Chih-Yang Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films,” Appl. Phys. Lett., vol. 95, 112904, August 2009 [62] Chung-Yang Huang, Chung-Yu Huang, Tsung-Ling Tsai, Chun-An Lin and Tseung-Yuen Tseng, “Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance,” Appl. Phys. Lett., vol. 104, 062901, Jan 2014.
|