跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠彰
研究生(外文):Huang, Kuan-Chang
論文名稱:具交叉結構二氧化鉿電阻式記憶體之可靠度與非線性特性研究
論文名稱(外文):Investigation of reliability and nonlinear characteristics in HfO2-based RRAM with crossbar structure
指導教授:曾俊元
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:89
中文關鍵詞:電阻式記憶體
外文關鍵詞:resistive switchingcrossbar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於快閃記憶體面臨到微縮物理極限與操作電壓過大等問題,因此,具簡單結構、操作速度快與低功率消耗的電阻式記憶體元件,極有可能取代傳統的快閃記憶體,成為下個世代非揮發性記憶體的主流。二氧化鉿為現今先進互補式金氧半場效電晶體的主流材料,因此以二氧化鉿薄膜為電阻轉態層的電阻式記憶體元件被大量的研究與探討。且於過去研究文獻顯示,二氧化鉿薄膜電阻式記憶體具有低電壓操作、低功率消耗、高密度堆疊結構等極佳的記憶體操作特性。
本篇論文分為兩個部分,第一部分探討二氧化鉿電阻式記憶體的熱穩定性。由於二氧化鉿的熱穩定性不佳,經由後續400 oC退火處理後,會產生氧離子逸失等問題,嚴重影響二氧化鉿電阻式記憶體的進一步開發與應用。因此,為了抑制上述現象,本論文利用內嵌一層具低自由能特性的氧化鋁薄膜於二氧化鉿電阻轉態層與上電極之間,藉此抑制退火處理後的二氧化鉿薄膜中的氧離子逸失現象。實驗結果顯示,此結構確實可有效抑制二氧化鉿薄膜中的氧離子逸失現象,並於高溫加速測試下,能提升資料保存能力特性,並且在30奈秒的快速脈衝電壓操作下,高低阻態電阻比值可維持大於10倍與高達一百萬次電阻轉換操作。
第二部分改將寬能隙薄膜嵌入於電阻轉態層與底電極之間,低阻態的電流-電壓特性將會從線性轉換成非線性。此寬能隙材料於底電極處成為穿隧能障,所以在小電壓時電子將直接穿隧此能障,而在大電壓時進行FN穿隧,使得電壓大到一定程度時電流突增。此非線性電阻式記憶體元件無須串聯非線性被動元件即可改善陣列式記憶體讀取錯誤的問題。

Recently, the challenges of flash memory device are scaling limits and high operation voltage, etc. Hence, resistive switching RAM has received great attention as the next generation nonvolatile memory device due to its advantages of simple structure, fast operation speed and low power consumption. Hafnium oxide has been employed as a high-k material for gate oxide for CMOS process and it also a superior material for RRAM. The HfO2-based RRAM shows good characteristics on low operation voltage, low power consumption and ultra-high density integration
The organization of the thesis can separated into two parts. In the first part, the thermal stability of the HfO2-based RRAM is discussed. This result shows that oxygen will release from HfO2 film during 400 oC post metal annealing process. It will affect the characteristics of the HfO2-based RRAM. Therefore, inserting a thin film with low Gibbs free energy between the resistive switching layer and bottom electrode can suppress the oxygen releasing problem which is due to high temperature annealing. Moreover, the data retention test under high temperature was improved. Under the high speed pulse operation of 30 ns, the device switched up to 106 cycles and the resistive ratio was larger than 10.
In the second part, the large band gap Al2O3 layer was inserted between resistive switching layer and the bottom electrode and the I-V characteristic in low resistance state will change from linear to nonlinear. The Al2O3 and HfO2 layer plays a role as tunnel barrier and transport layer, respectively. At low voltage region, the electrons transport through Al2O3 by direct tunneling. However, the electrons transport through Al2O3 by Fowler-Nordheim tunneling and the current increased abruptly at high voltage region. This nonlinear RRAM improves the problems of misreadng in crossbar array without a nonlinear passive device in series.

Chinese abstract i
English abstract ii
Acknowledgement iv
Content v
Figure Captions vii
Table Captions xi
Chapter 1 Introduction 1
1.1 Introduction of Random Access Memory 1
1.2 Volatile Memory 1
1.3 Non-volatile Memory 2
1.3.1 Flash Memory 2
1.3.2 FeRAM 4
1.3.3 MRAM 5
1.3.4 PCRAM 5
1.3.5 RRAM 6
Chapter 2 Resistive Random Access Memory 11
2.1 Introduction of RRAM 11
2.1.1 Materials of Insulator 11
2.1.2 Electrodes 12
2.2 The Structure of Resistive Random Access Memory 12
2.2.1 Basic Structure of RRAM 12
2.2.2 1D1R Structure 12
2.2.3 1T1R Structure 13
2.3 Electrical Characteristics in RRAM 13
2.3.1 Forming Process 13
2.3.2 Resistive Switching Operation Mode 14
2.3.3 Memory Characteristics 15
2.4 Mechanism of Electrical Conduction 16
2.4.1 Ohmic Conduction 16
2.4.2 Space-Charge-Limit Current 16
2.4.3 Schottky Emission 17
2.4.4 Frenkel-Poole emission 18
2.5 Resistive Switching Mechanism 18
2.5.1 Oxygen Vacancy Migration 19
2.5.2 Cation Migration 19
2.5.3 Joule Heating 20
Chapter 3 Experimental Details 27
3.1 Fabrication of Ti/HfO2/TiN RRAM Device 27
3.2 Improvement of Resistive Switching Characteristics by Adding Al2O3 Inserting Layer 28
Chapter 4 Improvement of Resistive Switching Characteristics by Adding Inserting Layer 33
4.1 Motivation 33
4.2 The Electrical Characteristics of Single Layer HfO2 RRAM Device 33
4.2.1 Electrical properties of device without annealing 34
4.2.2 Electrical properties of device with vacuum annealing 35
4.2.3 Electrical properties of device with O2 annealing 37
4.3 Improvement of Resistive Switching Characteristics by Adding Al2O3 Inserting Layer 39
4.3.1 Electrical properties of Ti/Al2O3/HfO2/TiN device without annealing 39
4.3.2 Electrical properties of Ti/Al2O3/HfO2/TiN device with vacuum annealing 40
4.3.3 Post-metal annealing 40
4.3.4 XPS analysis 41
4.4 Bipolar Resistive Switching in Ti/Al2O3/Pt Nonvolatile Memory with 1T1R Architecture 42
4.4.1 Process flow 42
4.4.2 Electrical properties analysis of device with 1T1R architecture 43
Chapter 5 Nonlinear Characteristics of RRAM 67
5.1 Motivation 67
5.2 Fabrication of Ti/HfO2/Al2O3/TiN RRAM Device 68
5.3 The Electrical Characteristics of nonlinear RRAM Device 68
5.3.1 Electrical properties of Single HfO2 layer Device 69
5.3.2 Electrical properties of Ti/HfO2/Al2O3/TiN Device 69
5.4 Resistive switching mechanisms of Ti/HfO2/Al2O3/TiN structure 69
Chapter 6 Conclusion 79
Reference 81

[1] Chang et al, International Conference on Solid State and Integrated Circuit Technology, pp. 428-431, 1998
[2] Christiensen et al, International Conference on Computer Modeling and Simulation, pp. 534-539, 2011
[3] D. Kahng and S.M. Sze, "A floating-gate and its application to memory devices," The Bell System Technical Journal, vol. 46, no. 4, 1967, pp. 1288-1295
[4] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[5] T. Yuan Heng, H. Chia-En, C. H. Kuo, Y. D. Chih, and L. Chrong Jung, "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[6] S. Dong-jun, P. Jubong, L. Nodo, H. Musarrat, J. Seungjae, C. Hyejung, L. Joonmyoung, J. Minseok, L. Wootae, P. Sangsu, K. Seonghyun, J. Yun Hee, Y. Lee, M. Sung, D. Kil, Y. Hwang, S. Chung, S. Hong, J. Roh, and H. Hyunsang, "Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[7] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, "Flash memory cells - An overview," Proceedings of the IEEE, vol. 85, pp. 1248-1271, Aug 1997.
[8] J. De Blauwe, "Nanocrystal nonvolatile memory devices," IEEE Transactions on Nanotechnology, vol. 1, pp. 72-77, Mar 2002.
[9] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to Flash memory," Proceedings of the IEEE, vol. 91, pp. 489-502, Apr 2003.
[10] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New ultra high density EPROM and Flash with NAND structure cell,” in IEDM Tech. Dig., 1987, pp. 552-555.
[11] J. F. Scott and C. A. Paz de Araujo, “Ferroelectric memories,” Science, vol. 246, pp. 1400-1405, Dec. 1989
[12] S. V. Pietambaram, N. D. Rizzo, R. W. Dave, J. Goggin, K. Smith, J. M. Slaughter, and S. Tehrani, "Low-power switching in magnetoresistive random access memory bits using enhanced permeability dielectric films," Applied Physics Letters, vol. 90, Apr 2007.
[13] J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," IEEE Transactions on Magnetics, vol. 32, pp. 3165-3184, Jul 1996.
[14] Gary A. Prinz, “Magnetoelectronics,” Science, vol. 282, pp. 1660-1663, Nov. 1996
[15] Albert Fert, “The CNRS has attributed this year's "Medaille d'Or" (Golden Medal) to the physicist Albert Fert, ” Press release, Oct. 2003
[16] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage," Nature materials, vol. 6, pp. 824-832, Nov 2007.
[17] H.-S. P. Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Rajendran, Mehdi Asheghi, Kenneth E.Goodson, "Phase change memory," Proceedings of the IEEE, vol. 98, pp. 2201-2227, Dec. 2010.
[18] H.-S. P. Wong et al, Proc. IEEE, vol. 100, no. 6, pp. 1951–1970, 2012
[19] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," nature materials, vol. 5, pp. 312-320, Apr 2006.
[20] K. Szot, R. Dittmann, W. Speier, and R. Waser, "Nanoscale resistive switching in SrTiO3 thin films," Physica Status Solidi-Rapid Research Letters, vol. 1, pp. R86-R88, Mar 2007.
[21] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, 2008.
[22] Y. M. Kim and J. S. Lee, “Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices,” J. Appl. Phys., vol. 104, 114115, Dec. 2008.
[23] L. Goux, Y. Y. Chen, L. Pantisano, X. P. Wang, G. Groeseneken, M. Jurczak, and D. J. Wouters, “On the gradual unipolar and bipolar resistive switching of TiN\HfO2\Pt memory systems,” Electrochem. Solid State Lett., vol. 13, pp. G54–G56, 2010.
[24] J. S. Choi, J. S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S. O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, “Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes,” Appl. Phys. Lett., vol. 95, 022109, Jul. 2009.
[25] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, pp. 5655–5657, Dec. 2004.
[26] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, 262907, Jun. 2005.
[27] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, 223510, Nov. 2007.
[28] C. Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366–368, May 2007.
[29] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures,” Electrochem. Solid State Lett., vol. 9G343–G346, 2006.
[30] C. Y. Lin, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable resistive switching in Al2O3 memory thin films,” J. Electrochem. Soc., vol. 154, pp. G189–G192, 2007.
[31] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. Technol., vol. 23, 075019, Jul. 2008.
[32] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, 022110, Jan. 2008.
[33] L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-Eon, L. Changbum, K. Kihwan, X. Wenxu, G. Stefanovich, L. Jung-Hyun, C. Seok-Jae, K. Yeon-Hee, L. Chang-Soo, P. Jong-Bong, and Y. In-Kyeong,“2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 771-774.
[34] Ming-Chi Wu, Yi-Wei Lin, Wen-Yueh Jang, Chen-Hsi Lin, and Tseung-Yuen Tseng, “Low-Power and Highly Reliable Multilevel Operation in ZrO2 1T1R RRAM,” IEEE Electron Device Letters, vol. 32, pp. 1026-1028, 2011.
[35] S. J. Song, K. M. Kim, G. H. Kim, M. H. Lee, J. Y. Seok, R. Jung, and C. S. Hwang, “ Identification of the controlling parameter for the set-state resistance of a TiO2 resistive switching cell,” Appl. Phys. Lett., vol. 96, no. 11, p. 112904, 2009.
[36] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and D.J. Wouters, “Control of filament size and reduction of reset current below 10 μA in NiO resistance switching memories,” Solid State Electron., vol. 58, no. 1, pp. 42-47, 2011.
[37] R. E. Thurstans and D. P. Oxley, "The electroformed metal-insulator-metal structure: a comprehensive model," Journal of Physics D-Applied Physics, vol. 35, pp. 802-809, Apr 2002.
[38] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, "Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory," Advanced Materials, vol. 19, pp. 2232, Sep 2007.
[39] YingTao Li, ShiBing Long, Qi Liu, HangBing Lü, and Su Liu, Ming Liu, “An overview of resistive random access memory devices,” Chinese Science Bulletin, vol. 56, pp.3072-3078, 2011
[40] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, Article ID 578168
[41] Meng-Han Lin, Ming-Chi Wu, Chen-Hsi Lin, and Tseung-Yuen Tseng, “Effects of Vanadium Doping on Resistive Switching Characteristics and Mechanisms of SrZrO3-Based Memory Films,” IEEE TED, vol. 57, pp.1801-1808, 2010
[42] Guo, X., Schindler, C., Menzel, S. &; Waser, R. “Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems,” Appl. Phys. Lett. Vol. 91, 133513 (2007).
[43] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, “Redox-Based Resistive Switching Memories -Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater. Vol. 21, pp.2632-2663, 2009
[44] Yuchao Yang and Wei Lu, “Nanoscale resistive switching devices: mechanisms and modeling,” Nanoscale, vol. 5, pp. 10076-10092, 2013
[45] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices," IEEE Transactions on Electron Devices, vol. 56, pp. 193-200, 2009.
[46] Huan-Lin Chang et al, IEEE International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 1-2, 2011
[47] Yu-Sheng Chen et al, IEEE Electron Device Letters, Vol. 32, no. 3, 2011
[48] Yu-Sheng Chen et al, IEEE Electron Device Letters, Vol. 32, no. 11, 2011
[49] H. Y. Lee et al, IEEE Electron Device Letters, Vol. 31, no. 1, 2010
[50] H. Y. Lee et al, IEDM Tech. Dig., pp. 297–300, 2008
[51] Jean-Charles Dupin et al, Phys. Chem. Chem. Phys., Vol. 2, 1319-1324, 2000
[52] J. Joshua Yang, M.-X. Zhang, Matthew D. Pickett, Feng Miao, John Paul Strachan et al., " Engineering nonlinearity into memristors for passive crossbar applications," Appl. Phys. Lett., vol. 100, 113501, Apr 2012.
[53] J. Joshua Yang, Matthew D. Pickett, Xuema Li, Douglas A. A. Ohlberg, Duncan R. Stewart and R. Stanley Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol. 3, 429- 433, Jun 2008
[54] Seong-Geon Park, Min Kyu Yang, Hyunsu Ju, Dong-Jun Seong, Jung Moo Lee, Eunmi Kim, Seungjae Jung, Lijie Zhang, Yoo Cheol Shin, In-Gyu Baek, Jungdal Choi, Ho-Kyu Kang, and Chilhee Chung, “A Non-Linear ReRAM Cell with sub-1μA Ultralow Operating Current for High Density Vertical Resistive Memory (VRRAM),” in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.8.1-20.8.4.
[55] Doo-In Kim, Jaesik Yoon, Ju-Bong Park, Hyunsang Hwang, Young Moon Kim et al., " Nonlinear current-voltage behavior of the isolated resistive switching filamentary channels in CuC nanolayer," Applied Physics Letters, vol. 98, 152107, Apr 2012.
[56] Doo Seok Jeong, Byung-ki Cheong, Hermann Kohlstedt, “Pt/Ti/Al2O3/Al tunnel junctions exhibiting electroforming-free bipolar resistive switching behavior,” Solid State Electron., vol.63, pp. 1-4, 2011
[57] H. Choi, J. Yi, S. Hwang, S. Lee, S. Song, S. Lee, J. Lee, D. Son, J. Park, S. J. Kim, J. Y. Kim, S. Lee, J. Moon, C. Kim, J. Park, M. Joo, J. Roh, S. Park, S. W. Chung, J. Rhee, and S. J. Hong, “The effect of tunnel barrier at resistive switching device for low power memory applications,” presented at the IEEE Int. Memory Workshop, 2011, pp. 1–4.
[58] Seung Jae Baik and Koeng Su Lim, "Bipolar resistance switching driven by tunnel barrier modulation in TiOx/AlOx bilayered structure," Applied Physics Letters, vol. 97, 072109, Apr 2010.
[59] Bo Soo Kang; Dongjae Cha; Sung Joo Lee; Sang Chul Na; Dong Wook Kim, ”Resistive Switching and Transport Characteristics of Cu/a-Si/Si Devices,” Journal of the Korean Physical Society, vol. 58, pp. 1156-1159, May 2011
[60] Florian Lentz, Bernd Roesgen, Vikas Rana, Dirk J. Wouters, and Rainer Waser,” Current Compliance-Dependent Nonlinearity in TiO2 ReRAM,” IEEE Electron Device Letters, vol. 34, pp.996-998, August 2013
[61] Sheng-Yu Wang, Dai-Ying Lee, Tseung-Yuen Tseng and Chih-Yang Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films,” Appl. Phys. Lett., vol. 95, 112904, August 2009
[62] Chung-Yang Huang, Chung-Yu Huang, Tsung-Ling Tsai, Chun-An Lin and Tseung-Yuen Tseng, “Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance,” Appl. Phys. Lett., vol. 104, 062901, Jan 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top