|
[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&;T Bell Labs Internal Tech. Memo., June 1995. [2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no.3, pp. 311-355, Mar. 1998. [3] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communication,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [4] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” AT&;T Bell Labs Tech. J., pp. 41-59, Aug. 1996. [5] A. J. Goldsmith and S. G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997. [6] S. Catreux, V. Erceg, D. Gesbert, and R. W. Heath, “Adaptive modulation and MIMO coding for broadband wireless data networks,” IEEE Commun. Mag., vol. 40, no. 6, Junly 2002. [7] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 1841-1852, Nov. 1999. [8] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, ”Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,” Electronic Letters, vol. 35, no. 1, pp. 14-16, Jan. 1999. [9] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” Math. Comput., vol. 44, pp. 463-471, Apr. 1985. [10] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. expected complexity,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2806-2818, Aug. 2005. [11] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2819-2834, Aug. 2005. [12] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved practical algorithms and solving subset sum problems,” Math. Programming, vol. 66, pp. 181-191, 1994. [13] W. Zhao and G. B. Giannakis, “Reduced complexity closest point decoding algorithms for random lattices,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 101-111, Jan. 2006. [14] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 491-503, Mar. 2006. [15] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bo¨lcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, Vol. 40, No.7, pp. 1566–1577, July 2005. [16] X. Huang, C. Liang, and J. Ma, “System architecture and implementation of MIMO sphere decoders on FPGA,” IEEE Tans. VLSI Systems, vol. 16, no. 2, pp. 188-197, Feb. 2008. [17] K. Wong, C. Tsui, R. S. Cheng, and W. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for mimo channels,” in Proc. IEEE ISCAS’02, vol. 3, May 2002, pp. 273-276. [18] Y. H. Wu, Y. T. Liu, Y. C. Liao, and H. C. Chang, “Early-pruned K-best sphere decoding algorithm based on radius constraints,” in Proceedings of IEEE International Conference on Communications, ICC 2008, May 2008, pp. 4496-4500. [19] Q. Li and Z. Wang, “Reduced compexity K-best sphere decoder design for MIMO systems,” Circuits, Systems, and Signal Processing, Birkhäuser Boston, vol. 27, no.4, pp. 491-505, Aug. 2008. [20] M. Shabany and P. G. Gulak, “A 0.13um CMOS, 655Mbps, 4x4 64-QAM K-best MIMO detector,” International Solid-State Circuits Conference, Feb. 2009, pp. 256-257. [21] B. Shim and I. Kang, “Sphere decoding with a probabilistic tree pruning,” IEEE Tans. Signal Processing, vol. 56, no. 10, pp. 4867-4878, Oct. 2008. [22] Q. Li and Z. Wang, “Improved K-best sphere decoding algorithms for MIMO systems,” in Proc. IEEE ISCAS’06, May 2006, pp. 4-7. [23] J. W. Choi, B. Shim, A. C. Singer, and N. I. Cho, “A low-complexity near-ML decoding technique via reduced dimension list stack algorithm,” in Proc. IEEE SAM 2008, July 2008, pp. 41-44. [24] S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal, “Combined K-best sphere decoder based on the channel matrix condition number,” in Proc. ISCCSP’08, May 2008, pp. 1058-1061. [25] S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal, “MIMO channel matrix condition number estimation and threshold selection for combined K-best sphere decoders,” IEICE Trans. Commun., no. 4, pp. 1380-1383, Apr. 2009. [26] L. Azzam and E. Ayanoglu, .”Reduced complexity sphere decoding for square QAM via a new lattice representation,” in Proc. IEEE GLOBECOM, Nov. 2007, pp. 4242-4246. [27] K. Amiri, C. Dick, R. Rao, and J. R. Cavallaro, “Novel sort-free detector with modified real-Vvalued decomposition (M-RVD) ordering in MIMO systems,” in Proc. IEEE GLOBECOM, Nov. 2008, pp. 4217-4221. [28] M. Myllylä, M. Juntti, and J. R. Cavallaro, “Implementation aspects of list sphere detector algorithms,” in Proc. IEEE GLOBECOM, 2007, pp. 2915-3920. [29] M. Myllylä, M. Juntti, and J. R. Cavallaro, “Implementation aspects of list sphere detector algorithms for MIMO-OFDM systems,” Signal Processing, vol. 90, issue 10, pp. 2863-2876, 2010. [30] H. L. Lin, R. C. Chang, and H. L. Chen, “A high speed SDM-MIMO decoder using efficient candidate searching for wireless communication,” IEEE Trans. Circuits and Systems- II, vol. 55, no. 3, pp. 289-293, Mar. 2008. [31] S. Mondal, K. N. Salama, and W. H. Ali, “A novel approach for K-best MIMO detection and its VLSI implementation,” in Proc. IEEE ISCAS’08, May 2008, pp. 936-939. [32] E. Dekel and I. Ozsvath, “Parallel external sorting,” J. Parallel and Distributed Computing, vol. 6, pp. 623-635, 1989. [33] Z. Wen, “Multi-way merging in parallel,” IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 1, pp. 11-17, Jan. 1996. [34] S. Mandal, A. Eltawil, and K.N. Salama, “Architectural optimiztions for low-power K-best MIMO decoders,” IEEE Trans. Vehicular Technology, vol. 58, no. 7, pp. 3145-3153, Sept. 2009. [35] S. Mondal, A. Eltawil, C. A. Shen, and K. N. Salama, “Design and Implementation of a sort-free K-best sphere decoder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp. 1497-1501, Oct. 2010. [36] K. Lee and J. Chun, “ML symbol detection based on the shortest path algorithm for MIMO systems,” IEEE Trans. Signal Processing, vol. 55, no. 11, pp. 5477-5484, Nov. 2007. [37] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Math. Ann., vol. 261, no. 4, pp. 513-534, 1982. [38] H. C. Chang, Y. C. Liao, and H. C. Chang, “Low-complexity prediction techniques of K-best sphere decoding for MIMO systems” Signal Processing Systems, 2007 IEEE Workshop, Oct. 2007, pp. 45-49. [39] A. Wiesel, X. Mestre, A. Pages, and J. R. Fonollosa, “Efficient implementation of sphere demodulation,” IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June, 2003, pp. 36-40. [40] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference Estimation Methods, New York: Academic, 1991. [41] M. E. Muller, “A note on a method for generating points uniformly on n-dimensional spheres,” Comm. Assoc. Comp. Mach., vol. 2, pp. 19-20, Apr. 1959. [42] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore, “A generalised sphere decoder for asymmetrical space–time communication architecture,” Elect. Lett., vol. 36, no. 2, pp. 166–167, Jan. 2000. [43] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank-deficient MIMO systems,” IEEE Commun. Lett., vol. 9, no. 5, pp. 423-425, May 2005. [44] P. Wang and T. L. Ngoc, “A low-complexity generalized sphere decoding approach for underdetermined MIMO systems,” in Proc. IEEE ICC, 2006, pp. 4266-4271. [45] P. Wang and T. L. Ngoc, “A low-complexity generalized sphere decoding approach for underdetermined linear communication systems: performance and complexity evaluation,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3376-3388, Nov., 2009. [46] G. Romano, F. Palmieri, P. S. Rossi, and D. Mattera, “A tree-search algorithm for ML decoding in underdetermined MIMO systems,” in Proc. ISWCS 2009, pp. 662-665. [47] G. Romano, F. Palmieri, P. S. Rossi, and F. Palmieri, “Tree-search ML detection for underdetermined MIMO systems with M-PSK constellations,” in Proc. ISWCS 2010, pp. 102-106. [48] Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere decoing in MIMO systems,” IEEE Signal Processing Lett., vol. 12, no. 1, pp. 41-44, Jan. 2005. [49] X. W. Chang and X. Yang, “An effieient tree search decoder with column recording for underdetermined MIMO systems,” in Proc. IEEE GLOBECOM 2007, pp. 4375-4379. [50] K. K. Wong and A. Paulraj, “Efficient near maximum-likelihood detection for underdetermined MIMO antenna systems using a geometrical approach,” EURASIP Journal on Wireless Commun. and Networking, Oct. 2007. [51] K. K. Wong, A. Paulraj and R. D. Murch, “Efficient high-performance decoding for overloaded MIMO antenna systems,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1833-1843, May 2007. [52] L. Bai, C. Chen, and J. Choi, “Prevoting cancellation-based detection for underdetermined MIMO systems,” EURASIP Journal on Wireless Commun. and Networking, vol. 2010, April 2010, article no. 96. [53] K. Liu, and S. S. Xing, “Combined multi-stage MMSE and ML multiuser detection for underdetermined MIMO systems,” in Proc. CCWMC 2011 IET, 2011, pp. 10-14. [54] T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, “Low-complexity near-optimal signal detection in underdetermined large-MIMO systems,” in Proc. NCC 2012, 2012, pp. 1-5. [55] C. J. Huang, C. Y. Wu, and T. S. Lee, “Geometry based efficient decoding algorithms for underdetermined MIMO systems,” in Proceedings of the IEEE SPAWC 2011, June 2011, pp. 371-375. [56] K. K. Wong and A. Paulraj, “Near maximum-likelihood detection with reduced-complexity for multiple-input single-output antenna systems,” in Proc. Asilomar Conf. on Signals, Systems, and Computers, Nov. 2004. [57] F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Performance, Cambridge University Press, 2009. [58] 3GPP TS 36.211, “Physical channels and modulation (Release 11),” July 2013. [59] M. Sawahashi, et al., "Coordinated multipoint transmission/reception techniques for LTE-Advanced," IEEE Wireless Commun. Mag., vol. 17, no. 3, pp. 26-34, Apr. 2010. [60] R. Irmer, et al., “Coordinated multipoint: concepts, performance, and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, Feb. 2011. [61] 3GPP TR 36.819, “Coordinated multi-point operation for LTE physical layer aspects (Release 11),” Dec. 2011. [62] M. Hong, R. Sun, H. Baligh, and Z.-Q. Luo, “Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 226-240, Feb. 2013. [63] Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, “Max-min fairness linear transceiver design for a multi-user MIMO interference channel,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2413-2423, May 2013. [64] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell MIMO cooperative networks: a new look at interference,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380-1408, Dec. 2010. [65] M. R. McKay, I. B. Collings, and A. M. Tulino, “Achievable sum rate of MIMO MMSE receivers: A general analytic framework,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 396-410, Jan. 2010. [66] R. Uehara and Y. Uno. “Efficient algorithms for the longest path problem,” in 15th Annual International Symposium on Algorithms and Computation (ISAAC 2004), 2004, pp. 871-883.
|