跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁凱奇
研究生(外文):Liang, Kai-Chi
論文名稱:多輸入多輸出OFDM與無合成器LINC-OFDM系統之遞迴偵測與解碼
論文名稱(外文):Iterative Detection and Decoding for MIMO-OFDM and Combinerless-LINC-OFDM Systems
指導教授:吳文榕
指導教授(外文):Wu, Wen-Rong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:95
中文關鍵詞:遞迴解偵測解碼渦輪等化多輸入多輸出系統以非線性元件做線性功率放大使用之系統
外文關鍵詞:Iterative detection and decodingturbo equalizationMIMO systemLINC system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在多輸入多輸出的系統中,軟性映射器渦輪等化接收器設計上的一個重要運算。但很不幸的是最佳的軟性映射需要很高的複雜度,因此具備低複雜度又效能不錯的最小均方誤差軟性映射器便成了一個替代方案。在這篇論文中,我們首先考慮傳統多輸入多輸出OFDM系統的渦輪等化接收器,我們提出兩個方最小均方誤差軟性映射器兩個改進方案,其主要的做法是在將連續干擾消除的概念置入軟性映射當中。接著,為了降低等化的複雜度,我們提出一個最大比率合成的軟性映射器。模擬結果顯示我們所提出的最小均方誤差軟性映射器可以在與傳統最小均方誤差軟性映射器相同的複雜度下達到更好的錯誤率,而最大比率合成器也可以在低一個階數複雜度的情況下達到與傳統最小均方誤差軟性映射器類似的錯誤率。接著,我們探討無合成器之使用非線性元件線性放大OFDM系統。我們提出一個方法把BCJR解碼器解出的軟性位元放入遞迴干擾消除,透過模擬發現這樣的遞迴解碼方式在錯誤率上會遠比傳統OFDM系統表現得好。
A key operation in turbo equalization (TEQ) of MIMO systems is the soft-input-soft-output demapping. Unfortunately, optimum demapping requires a prohibitively high complexity. The MMSE demapper, with good performance and lower complexity, is known to be an effective remedy. In this thesis, we first consider the turbo equalization in MIMO-OFDM systems. We propose two methods to improve the performance of the MMSE demapper. The main idea is including ordered-successive-interference-cancellation (OSIC) in the demapping process. To further reduce the complexity, we also propose a maximum-ratio-combining (MRC) demapper. Simulation results show that the proposed MMSE demapper achieves much better performance while the complexity is the same and the proposed MRC demapper have a complexity an order less than that of the MMSE demapper while the performance remains similar. We then consider the iterative decoding of combinerless (CL) linear-amplification-with-nonlinear-component (LINC) OFDM systems. Taking the soft decoding result of the BCJR algorithm, we include a partial interference- cancellation (IC) scheme in the iteration. Simulations show that the proposed CL-LINC-OFDM receiver significantly outperforms the conventional one.
摘要 I
致謝 III
MENU IV
FIGURE AND TABLE MENU VI
CHAPTER 1 INTRODUCTION - 1 -
1.1 MOTIVATION - 1 -
1.2 CONTRIBUTIONS - 3 -
1.3 ORGANIZATION - 4 -
CHAPTER 2 SYSTEM MODELS AND LLRS - 5 -
2.1 SYSTEM MODEL - 5 -
2.2 BIT DETECTION - 6 -
2.2.1 MAPSE Problem - 6 -
2.2.2 Definitions of Bit LLRs - 7 -
2.3 CASES IN TURBO SYSTEMS - 11 -
CHAPTER 3 TURBO CODES - 16 -
3.1 TURBO ENCODER - 16 -
3.2 CODE INTERLEAVER AND DEINTERLEAVER - 17 -
3.2.1 Semi-random S-random Interleaver [8] - 18 -
3.2.2 Deterministic Quadratic interleaver - 19 -
3.3 TURBO DECODER - 20 -
3.4 MAP DECODER FOR CONVOLUTIONAL CODES: BCJR DECODER - 21 -
3.4.1 Soft Decoding of Information Bits - 21 -
3.4.2 Application BCJR Decoder into Turbo Decoder - 24 -
CHAPTER 4 CONVENTIONAL TEQ FOR MIMO-OFDM SYSTEM - 25 -
4.1 SYSTEM MODEL - 25 -
4.2 SOFT DEMAPPER - 26 -
4.2.1 MMSE Demapper - 26 -
4.2.2 MIMO Demapper - 29 -
4.3 DECODER MODIFICATION - 39 -
CHAPTER 5 PROPOSED TEQ FOR MIMO-OFDM SYSTEM - 41 -
5.1 OVERVIEW - 41 -
5.2 EMMSE DEMAPPER - 43 -
5.3 DELTA-MMSE DEMAPPER - 43 -
5.4 OSIC-MMSE DEMAPPER - 46 -
5.5 OSIC-MRC DEMAPPER - 48 -
CHAPTER 6 CONV. ITERATIVE DECODING FOR CL-LINC-OFDM SYSTEM - 50 -
6.1 INTRODUCTION - 50 -
6.2 SYSTEM MODEL - 53 -
6.3 PREVIOUS WORKS - 55 -
6.3.1 EZF Demapper - 56 -
6.3.2 The LVA Decoder and Low-Complexity ML Detector - 58 -
6.3.3 Iterative Decoding with Partial Interference Cancellation - 58 -
CHAPTER 7 PROPOSED ITERATIVE DECODING FOR CL-LINC-OFDM SYSTEM - 60 -
7.1 TWO PROPOSED EZF DEMAPPERS - 60 -
7.1.1 Optimal EZF Demapper - 60 -
7.1.2 Proposed EZF: Interference Minimization - 64 -
7.1.3 Proposed EZF: Estimation of c - 65 -
7.2 LOW-COMPLEXITY ML DETECTOR: RSML METHOD - 66 -
7.2.1 T-RSML Method - 66 -
7.2.2 (T,C)-RSML Method - 68 -
7.3 ITERATIVE DECODING WITH PARTIAL INTERFERENCE CANCELLATION - 69 -
CHAPTER 8 SIMULATION RESULTS - 71 -
8.1 MIMO-OFDM SYSTEM - 71 -
8.1.1 Optimum Performance of TEQ - 72 -
8.1.2 Performance of EMMSE Demapper - 73 -
8.1.3 Performance of OSIC-MMSE Demapper - 74 -
8.1.4 Performance of MRC Demapper - 76 -
8.1.5 Performance of OSIC-MRC Demapper - 77 -
8.1.6 Performance of OSIC-MRC Demapper with Turbo Codes - 80 -
8.1.7 Performance of OSIC-MRC with Turbo Codes: Inner-Outer Iteration - 82 -
8.2 CL-LINC-OFDM SYSTEM - 83 -
8.2.1 Performance of EZF Demappers - 84 -
8.2.2 Performance of T-RSML Method - 85 -
8.2.3 Performance of (T,C)-RSML Method - 87 -
8.2.4 Performance of Iterative Decoding by PAIC - 88 -
8.2.5 Performance of Iterative Decoding by PAIC and Turbo Codes - 89 -
CHAPTER 9 CONCLUSIONS - 91 -
REFERENCES - 93 -

[1] Claude Beerou and Alain Glavieux, “Near Optimum Error Correcting Coding and Decoding: Turbo-Codes,” IEEE Trans. on Comm., Vol. 44, No. 10, pp. 1261-1271, Oct. 1996.
[2] Mathini Sellathurai and Simon Haykin, “TURBO-BLAST for Wireless Communications: Theory and Experiments,” IEEE Trans. on Signal Proc., Vol. 50, No. 10, pp. 2538-2546, Oct. 2002.
[3] Bertrand M. Hochwald and Stephan ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel,” IEEE Trans. on Comm., Vol. 51, No. 3, pp. 587-590, March 2003.
[4] Barbero, L.G. and Thompson, J.S., “Fixing the Complexity of the Sphere Decoder for MIMO Detection,” IEEE Trans. on Wireless Comm., Vol. 7, No. 6, pp. 2131-2142, June 2008.
[5] Wen-Rong Wu and Ryan Fan, “Performance Evaluation for IEEE 802.15.3c HIS MIMO Multicarrier System,” M.S Thesis, NCTU, July 2013.
[6] Wen-Rong Wu, Sheng-Lung Cheng, and Ying-Pei Hsu, “Maximum Likelihood Detection for Coded Combinerless LINC-OFDM system,” to be submitted
[7] Shu Lin and Daniel J. Costello, Jr, “Error Control Coding,” 2nd eddition, Person, Prentice Hall (1983, 2004) .
[8] Dolinar and D. Divsalar, “Weight Distribution for Turbo Codes Using Random and Nonrandom Permutations,” TDA Progress Report 42-122, Jet Propulsion Laboratory, Pasadena, Calif., August 1995
[9] Licai Fang, Qinghua Guo, Defeng (David) Huang, Sven Nordholm, “A Low Cost Soft Mapper for Turbo Equalization with High Order Modulation,” SoC Design Converence (ISOCC), 2012 International, pp. 305-308, 2012
[10] Chao Xu, Dandan Liang, Shinya Sugiura, Soon Xin Ng, and Lajos Hanzo, “Reduced-Complexity Approx-Log-MAP and Max-Log-MAP soft PSK/QAM Detection Algorithms,” IEEE Trans. on Comm., Vol. 61, No. 4, pp. 1415-1425, April 2013.
[11] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston, MA: Artech House, 2002.
[12] H. Ochiai, “Power efficiency comparison of OFDM and single-carrier signals,” in Proc. IEEE VTC02 Fall, Sep. 2002, pp. 899-903.


[13] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Elect.Lett., vol. 38, no. 8, Feb. 2002, pp. 246-47.
[14] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Elect. Lett., vol. 33, no. 5, Feb. 1997, pp. 368-69.
[15] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio
[16] R. W. Bauml, R. F. H. Fisher, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Elect. Lett., vol. 32, no. 22, Oct. 1996, pp. 2056-57.
[17] F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, “Power ampliers and transmitters for RF and microwave,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 814-826, Mar. 2002.
[18] John Groe, “Polar transmitters for wireless communications,” IEEE Comm. Mag., vol. 45, issue 9, pp 58-63, Sep. 2007.
[19] Paul Liang, Hua Wang, C. H. Peng, Albert Peng, etc., “Digital transmitter design for mobile devices,” IEEE Comm. Mag., vol. 51, issue 10, pp 114-123, Oct. 2013. 28
[20] L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, pp. 803-806, July 1952.
[21] C. Buoli, A. Abbiatti, and D. Riccardi, “Microwave power amplifier with enveloped controlled drain power supply,” Proc. 25th European Microwave Conf., pp. 31-35, Sept. 1995.
[22] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, pp. 1163-1182, Sept.1936.
[23] D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Comm., vol. COM-22, no. 12, pp. 1942-1945, Dec. 1974.
[24] H. Chireix, “High power outphasing modulation,” Proc. IRE, vol. 23, no. 11, pp. 1370-1392, Nov. 1935
[25] S. A. Hetzel, A. Bateman, and J. P. McGeehan, “A LINC transmitter,” Electron. Lett., vol. 27, no. 10, pp. 844-846, May 1991.
[26] X. Zhang, L. E. Larson, P. M. Asbeck, and P. Nanawa, “Gain/phase imbalance- minimization techniques for LINC transmitters,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2507-2516, Dec. 2001.
[27] L. Sundstrom, “Automatic adjustment of gain and phase imbalances in LINC transmitters,” Electron. Lett., vol. 31, no 3, pp. 155-156, Feb. 1995
[28] A. Birafane, M. El-Asmar, A. B. Kouki, M. Helaoui, and F. M. Ghannouchi, “Analyzing LINC systems,” IEEE Microw. Mag., vol. 11, no. 5, pp. 59-71, Aug. 2010.
[29] K. Y. Jheng, Y. J. Chen, and A. Y. Wu, “Multilevel LINC system designs for power efciency enhancement of transmitters,” IEEE J. Sel. Top. Signal Process., vol. 3, no. 3, pp. 523-532, Jun. 2009.
[30] F. H. Raab, “Effiency of outphasing RF power-amplier system,” IEEE Trans. Comm., vol. COM-33, no. 2, pp. 1094-1099, Oct. 1985.
[31] M. A. Elaal, “LINC based amplifier architectures for power efficient wireless transmitters,” Ph.D. dissertation, Dept. Electron. Eng., Ecole Polytechnique De Montreal, Montreal, Canada, 2009.
[32] F. Benahmed Daho, G. Neveux, M. Mouhamadou, P. Vaudon, C. Decroze, D. Carsenat, “An operational modified-LINC demonstrator for wireless communication,” in Proc. 5th Eur. Conf. Antennas Propag. (EuCAP), Rome, Italy, Apr. 2011, pp. 480-482.
[33] S. Ali, B. Adebisi, G. Markarian, E. Arikan, “Signal combining in LINC amplifier using Alamouti codes” Electron. Lett., vol. 46, no. 18, pp. 1301-1302, Sep. 2010.
[34] C. Liang and B. Razavi, “Transmitter linearization by beamforming,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1956-1969, Sep. 2011.
[35] J. P. Kermoal, L. Schumacher, and P. E. Mogensen, “Channel Characterization,” IST- 2000-30148 I-METRA-WP2-D2, v1.2, Oct. 2002.
[36] K. S. Hsu, “Maximum likelihood detection for combinerless LINC-OFDM system” M.S. thesis, Inst. Comm. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, Republic of China, 2011.
[37] H. Ochiai and H. Imai, “Performance analysis of deliberately clipped OFDM signals,” IEEE Trans. Comm., Vol. 50, No. 1, pp. 89-101, Jan. 2002
[38] Michael T. and Andrew C. Singer, “Turbo Equalization: An Overview,” IEEE Trans. Inf. Theory, Vol. 57, No. 2, pp. 920-952, Jan. 2011
[39] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,” Dol. 10.1109/ISSSE. 1998.738086, pp. 295-300 No. 2, pp. 920-952, Oct. 1998
[40] Kwan-wai Wong, Chi-ying Tsui, R. S.-K. Cheng, and Wai-ho Mow, "A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels," in 2002 IEEE International Symposium on Circuits and Systems, Proceedings, Phoenix-Scottsdale, AZ, USA, 2002, p. III-273-III-276.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top