跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/08 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳東穎
研究生(外文):Wu, Tung-Ying
論文名稱:基於定小波轉換及影像特徵分析於電腦斷層影像自動提取耳下腺病灶方法之研究
論文名稱(外文):A Method Based on SWT and Image Feature Analysis for Automatic Extraction of Parotid Lesions in CT Images
指導教授:林昇甫林昇甫引用關係
指導教授(外文):Lin, Sheng-Fuu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:115
中文關鍵詞:耳下腺電腦斷層定小波轉換病灶分析幾何特徵分析主動輪廓
外文關鍵詞:parotidcomputer tomographystationary wavelet transformlesion analysisgeometric shape feature analysisactive contour model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著醫學影像技術的進步,要處理大量的臨床資料,電腦輔助診斷已被提出為一有效的解決方法。在近幾年,頭頸部癌症病例數量的增加是種令人憂心的狀況,而耳下腺病灶的出現常伴隨著其他頭頸部區的相關疾病。影像處理被認為是可以實現醫療自動化及輔助診斷的一個有效方法,然而當傳統方法應用於耳下腺部位輔助醫療時,常會遇到因為影像的低對比及其不明顯且模糊的組織邊緣所發生的問題,而使得影像輔助診斷變得困難。所以,在此研究中,為了要針對耳下腺病灶自動化鑑別及定位,提出了特徵式影像分區,並且設計以形態學為基礎的方法以達到提取不同特徵軟組織區域的目的。定小波轉換 (stationary wavelet transform, SWT),可以在不減低其影像解析之下而提取影像內的局部特徵。耳下腺病灶則是利用所提取出的組織區域其外型幾何特徵作為判號並且再定位。為了更進一步提升病灶區域提取的精確度,主動輪廓模型(active contour model, ACM)則是被用來找尋更精確的組織區輪廓。然而,為了提升主動輪廓迭代在不明顯的組織邊緣上的收斂特性,其初始條件是以繼承組織區域提取的結果,以避免受到外部強邊緣的干擾,而對區域特徵能量圖的強化更可以提升其吸引輪廓演進的效率。根據實驗,其對病灶判斷的真陽性率(true-positive, TP)可達到91%,而偽陽性率為15%。在病灶組織輪廓提取上,其與臨床專家的相似程度可及精確度均可以達到90%以上。
With the progress of medical imaging, computer-aided diagnosis (CAD) is proposed as a solution to deal with the increasing amount of medical data. In recent years, the increasing number of head and neck (H&;N) tumor cases is concerned, and the parotid gland lesions may be associated with various H&;N disease. To improve medical automation on the parotid, image-based analysis with traditional methods encounters difficulties on the low contrast and weak boundaries of the parotid tissues in the H&;N CT images. Therefore, in this research, in order to improve the automation of parotid lesion identification and localization, feature-based segmentation and designed morphological processes are designed to extract the soft tissue regions. Stationary wavelet transform (SWT) is utilized in this work to obtain the local features without resolution degradation. The suspected lesions are identified with their geometric shape features and can be localized. Furthermore, in order to obtain the lesion information with higher accuracy, fine delineation method based on the active contour model (ACM) with automatic initial conditions is proposed. In order to improve the convergence properties on the weak soft tissue boundaries, the initial contour utilizes the segmentation results, and the enhancement of the feature map can increase the attraction on contour evolution. In the experiment, the true-positive (TP) rate of lesion identification can approach 91% and false-positive (FP) rate is about 15%. The lesion delineation can approach average 90% similarity with the results from clinical experts, and accuracy of the fine delineation results on dimension can also approach over 90%.
Introduction 1
1.1. Motivation 1
1.2. Review of related works 6
1.3. Proposed work and research approach 16
2. Undecimated Wavelet Transform 20
2.1 Wavelet transform 20
2.2 Undecimated Wavelet Transform 25
2.2.1 Stationary wavelet transform (SWT) 27
3. SWT-Based Features and Soft Tissue Region Segmentation 32
3.1 Feature descriptors and tissue region segmentation 33
3.1.1 SWT-based local feature descriptors 33
3.1.2 Mean-Shift Algorithm 35
3.1.3 Fuzzy C-Means Algorithm 36
3.1.4 K-Means Algorithm 37
3.2 Segmentation of tissues in parotid region 38
4. Tissue Region Extraction and Suspected Lesion Determination 46
4.1 Extraction of segmented tissue regions 47
4.2 Geometric shape feature analysis 51
4.3 Lesion determination and fuzzy probability 55
4.4 Parameter estimation of membership functions 59
5. Fine Delineation of Parotid Lesions with Enhancement of the SWT-Based Features 62
5.1 Geodesic active contour model and derivation of initial contours 63
5.2 SWT-based enhanced gradient for GAC 69
6. Experiment and Discussion 72
6.1 Experiment material 72
6.2 Performance evaluation 74
6.3 Experiment results 75
6.3.1 Lesion region extraction 75
6.3.2 Lesion tissue delineation 79
6.3.3 Discussion 88
7. Conclusion 99
Bibliographies 105

[1] G. Widmann , R. Widmann , E. Widmann , W. Jaschke and R. Bale , “Use of a surgical navigation system for CT-guided template production,” Int. J. Oral Maxillofac Implants, vol. 22, no.1, pp.72-78, 2007.
[2] MedPix, http://rad.usuhs.edu/medpix/
[3] Department of Health, ROC(Taiwan), Available: https://cris.bhp.doh.gov.tw/.
[4] B. Amirlak, et al “Malignant Parotid Tumors”, Available: http://emedicine.medscape.com/article/1289616-overview.
[5] The Merck Manual for health care professional, Salivary Gland Tumors,
Available: http://www.merckmanuals.com/professional/ear_nose_and_throat_disorders/tumors_of_the_head_and_neck/salivary_gland_tumors.html.
[6] Diagnosis and treatment of salivary gland cancer, Available: http://cancer.stanford.edu/headneck/salivary.html.
[7] G. L. Ellis, P. L. Auclair, and D. R. Gnepp, “Other malignant epithelial neoplasms,” Surgical pathology of the salivary glands 25, 455, 1991.
[8] C. L. Gordon, C. E. Webber, J. D. Adachi and N. Christoforou, “In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images,” Phys. Med. Biol. vol.41, pp.495-508,1996.
[9] T. Lei and W. Sewchand, “Statistical approach to X-Ray CT imaging and its applications in image analysis,” IEEE Trans. Med. Imaging, vol.11, no.1, pp.53-61, 1992.
[10] M. Mancas, B. Gosselin and B. Macq, “Segmentation using region-growing thresholding,” SPIE 5672: Image Processing: Algorithms and Systems, vol. IV, pp.388, 2005.
[11] V. Chalana, and Y. Kim, “A methodology for evaluation of boundary detection algorithms on medical images,” IEEE Trans. Med. Imag. vol.16, no.1, pp. 642-652, 1997.
[12] P. Campadelli, E. Caseraghi, S. Pratissoli and G. Lombardi, “Automatic abdominal organ segmentation from CT images,” Electronic Letters on Computer Vision and Image Analysis, vol.8, no.1, pp.1-14, 2009.
[13] O. Zayane, B. Jouini and M.A. Mahjoub. “Automatic liver segmentation method in CT images,” Canadian Journal on Image Processing &; Computer Vision, vol. 2, no. 8, December 2011.
[14] P. Campadelli and E. Caseraghi, “Liver segmentation from computed tomography scans: A survey and a new algorithm,” Artificial intelligence in medicine, vol. 45, no.2-3, pp. 185-196, 2009.
[15] W. Seong, J. H. Kim, E. J. Kim and J. W. Park, “Segmentation of abnormal liver using adaptive threshold in abdominal CT images”, IEEE Nuclear Science Symposium Conference Record, pp. 2372-2375, 2010.
[16] L. Soler, H. Delingette, G. Malandain, J. Montagnat, N. Ayache, C. Koehl, and J. Marescaux, “Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery,” Computer Aided Surgery, vol.6, no.3, pp.131-142, 2001.
[17] S. J. Lim, Y. Y. Jeong and Y. S. Ho, “Automatic liver segmentation for volume measurement in CT Images,” J. Vis. Commun. Image R., vol.17, pp.860-875, 2006.
[18] A. A. Moghe, J. Singhai and S. C. Shrivastava, “Automatic threshold based Liver lesion segmentation in abdominal 2D-CT images,” International Journal of Image Processing, vol.5, no.2, 2011.
[19] M. Pham, R. Susomboon, T. Disney, D. Raicu and J. Furst, “A comparison of texture models for automatic liver segmentation,” Medical Imaging. International Society for Optics and Photonics, pp. 65124E-65124E-12, 2007.
[20] L. Massoptier, and S. Casciaro, “A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans,” European Radiology, vol. 18, no. 8, pp.1658-1665, 2008.
[21] Q. Gao, S. J. Wang, D. Z. Zhao, J. R. Liu, “Accurate lung segmentation for x-ray CT images,” in Natural Computation, ICNC 2007. Third International Conference on, IEEE, vol. 2, Haikou, China, August 2007, pp. 275-279.
[22] B. Zheng, J.K. Leader III, G.S. Maitz, B.E. Chapman, C.R. Fuhrman, R.M. Rogers, F.C. Sciurba, A. Perez, P. Thompson, W.F. Good, and D. Gur, “A simple method for automated lung segmentation in x-ray CT images,” Medical Imaging 2003, International Society for Optics and Photonics, vol. 5032, pp. 1455-1463, 2003.
[23] Y. Wei, C. Chang, T. Jia and X. Xu. “Segmentation of regions of interest in lung CT images based on 2-D Otsu optimized by genetic algorithm”, in IEEE Control and Decision Conference, Shanghai, China, December 2009, pp. 5185-5189.
[24] S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic lung segmentation for accurate quantitation of volumetric x-ray CT images,” IEEE Trans. Med. Imag., vol. 20, pp. 490–498, 2001.
[25] E.M. van Rikxoort, B. de Hoop, M.A. Viergever, M. Prokop, and B. van Ginneken, “Automatic lung segmentation from thoracic CT scans using a hybrid approach with error detection,”Medical Physics, vol. 36, no. 7, pp. 2934–2947, 2009.
[26] A. Lauric and S. Frisken, Soft segmentation of CT brain data, Tufts University, 2007.
[27] Y. Zhao,Y. Zan, X. Wang and G. Li., “Fuzzy c-means clustering-based multilayer perceptron neural network for liver CT images automatic segmentation”, Chinese Control and Decision Conference, 2010.
[28] X. Zang, J. Yang, D. Weng, V. Liu and Y. Wang, “A novel anatomical structure segmentation method of CT head images”, in IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia, July 13-15, 2010, pp. 316-320.
[29] M. A. Jaffar, A. Iqbal, A. Hussain, R. Baig and A. M. Mirza, “Genetic fuzzy based automatic lungs segmentation from CT scans images,” International Journal of Innovative Computing, Information and Control, vol.7, no. 4, 2011.
[30] D. Zhang and D. J. Valentino, “Segmentation of anatomical structures in x-ray computed tomography images using artificial neural networks”, Medical Imaging 2002, International Society for Optics and Photonics, pp. 1640-1652, 2002.
[31] K. T. Bae, M. L. Giger, H. MacMahon, and K. Doi, “Automatic Segmentation of Liver Structure in CT Images,” Med. Phys. vol. 20, no.1, pp.215-223, 1993.
[32] R. Pohle and K. D. Toennies, “Segmentation of medical images using adaptive region growing,” SPIE. Proc. Int. Soc. Opt. Eng., vol.4322, pp.1337-1346, 2001.
[33] Y. Cao, X. Hao, X. Zhu, and S. Xia, “An adaptive region growing algorithm for breast masses in mammograms,” Frontiers of Electrical and Electronic Engineering in China, vol.5, no.2, pp. 128-136, 2010.
[34] M. Kallergi, K. Woods, L. P. Clarke, W. Qian and R. A. Clark, “Image segmentation in digital mammography: comparison of local thresholding and region growing algorithms,” Comput. Med. Imaging Graph. vol.16, no.5, pp.323-31, 1992.
[35] V. D. Nguyen, Van Nguyen, T., T. D. Nguyen and D. T. Nguyen, “Detect abnormalities in mammograms by local contrast thresholding and rule-based classification,” in Communications and Electronics (ICCE), 2010 Third International Conference on. IEEE, Nha Trang, Vietnam, August 11-13, 2010.
[36] P. Wei, J. Li, S. Zhao, D. Lu and G. Chen, “A method of detection micro-calcifications in mammograms using wavelets and adaptive thresholds,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, Shanghai, China, May 16-18, 2008, pp. 2361-2364.
[37] A. Nayak, D. K. Ghosh and A. Samit, “Suspicious lesion detection in mammograms using undecimated wavelet transform and adaptive thresholding,” in 15th International Conference on Advanced Computing Technologies (ICACT), Annamacharya Institute Of Technology &; Sciences, Rajampet. IEEE, September 21-22nd, 2013, pp. 207-210.
[38] K. Hu, X. Gao and F. Li. “Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms,” Instrumentation and Measurement, IEEE Transactions on vol. 60. no.2, pp. 462-472, 2011.
[39] A. N. Karahaliou, I. S. Boniatis, S. G. Skiadopoulos, F. N. Sakellaropoulos, N. S. Arikidis, E. A. Likaki &; L. I. Costaridou, “Breast cancer diagnosis: analyzing texture of tissue surrounding microcalcifications,” IEEE Transactions on Information Technology in Biomedicine, vol.12, no.6, pp. 731-738, 2008.
[40] H. Al-Shamlan and A. El-Zaart, “Feature extraction values for breast cancer mammography images”, International Conference on Bioinformatics and Biomedical Technology (ICBBT), 2010, IEEE, Singapore, April 16-18, 2010, pp. 335-340.
[41] L. Ke, N. Mu and Y. Kang, “Mass computer-aided diagnosis method in mammogram based on texture features”, International Conference on Bioinformatics and Biomedical Technology (ICBBT), 2010, IEEE, Singapore, April 16-18, 2010, pp. 354-357
[42] B. Sahiner , H. P. Chan, N. Petrick, , D. Wei, M. A. Helvie, D. D. Adler and M. M. Goodsitt, “Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images,” IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp.598-610,1996.
[43] N. R. Mudigonda, R. M. Rangayyan and J. L. Desautels, “Gradient and texture analysis for the classification of mammographic masses,” IEEE Transactions on Medical Imaging, vol.19, no.10, pp.1032-1043, 2000.
[44] B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie and M. M. Goodsitt, “Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,” Medical Physics, vol.25, no.516, pp. 516-526, 1998.
[45] J. Mohanalin, P. K. Kalra, and N. Kumar, “Fuzzy-based Micro calcification segmentation,” International Conference on Electrical and Computer Engineering, ICECE 2008.. IEEE, Dacca, Bangladesh, December 20-22, 2008, pp. 49-52.
[46] F. Sahba and V. Anastasios, “A novel fuzzy based framework for detection of clustered microcalcification in mammograms,” IEEE International Conference on Fuzzy Systems (FUZZ), 2010. IEEE, Yantai, China, August 10-12, 2010, pp. 1-6.
[47] C. M. Tiu, T. L. Jong and C. W. Hsieh, “Self-organizing map neural network with fuzzy screening for micro-calcifications detection on mammograms,” IEEE Conference on Soft Computing in Industrial Applications, 2008. SMCia'08., IEEE, Muroran, Japan, June 25-27, 2008, pp. 421-425.
[48] T. C. Cahoon, M. A. Sutton and J. C. Bezdek, “Breast cancer detection using image processing techniques,” The Ninth IEEE International Conference on FUZZ 2000, IEEE, San Antonio, Texas, U.S.A, May 7-10, 2000, pp. 973-976.
[49] H. D. Li, M. Kallergi, L. P. Clarke, and V. K. Jain, “Markov random field for tumor detection in digital mammography,” IEEE Transactions on Medical Imaging, pp. 565-576, 1995.
[50] A. P. Dhawan, G. Buelloni and R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Transactions on Medical Imaging, vol. 5, no. 1, pp. 8-15, 1986.
[51] H. L. Tong, M. F. A. Fauzi, and K. Ryoichi, “Automated Segmentation and Retrieval System for CT Head Images,” Visual Informatics: Bridging Research and Practice, Springer Berlin Heidelberg, pp. 97-109, 2009.
[52] M.Tabakov, H. Kwasnicka and K. Krynicki. “A rule-based region growing fuzzy segmentation system for pathological brain computed tomography images,” Systems Science, vol.36, no.2, pp. 23, 2010.
[53] J. Selvakumar, A. Lakshmi and T. Arivoli, “Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm,” International Conference on Advances in Engineering, Science and Management, IEEE, 2012.
[54] Q. U. Ain, I. Mehmood, S. M. Naqi and M. A. Jaffar, “Bayesian classification using DCT features for brain tumor detection,” Knowledge-Based and Intelligent Information and Engineering Systems,Springer Berlin Heidelberg, pp. 340-349, 2010.
[55] A. P. Nanthagopal and R. Sukanesh, “Wavelet statistical texture features-based segmentation and classification of brain computed tomography images,” Image Processing, IET vol. 7, no. 1, pp. 25-32, 2013.
[56] A. P. Nanthagopal and R. Sukanesh, “Automatic classification and segmentation of brain tumor in CT images using optimal dominant gray level run length texture features,” Int. J. Adv. Comp. Sci. Appl., vol. 2, no.10, pp. 53-59, 2011.
[57] A. P. Nanthagopal and R. S. Rajamony, “A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier,” Journal of medical engineering &; technology, vol.36, no.5, pp. 271-277, 2012.
[58] W. Chen and K. Najarian “Segmentation of ventricles in brain CT images using Gaussian mixture model method,” in ICME International Conference on. IEEE, Cancun, Mexico, June 28-July 3, 2009, pp. 1-6.
[59] A. Rutczyńska, A. Przelaskowski, M. Jasionowska, and G. Ostrek, “Method of brain structure extraction for CT-Based stroke detection,” Information Technologies in Biomedicine, Springer Berlin Heidelberg, pp. 133-144, 2010.
[60] A. Markova, F. Temmermans, R. Deklerck, E. Nyssen and J. d. Mey, “Lesion Segmentation Algorithm for Contrast Enhanced CT Images,” Proc. SPIE. Optics, Photonics, and Digital Technologies for Multimedia Applications, 2010.
[61] E. L. Chen, , P. C. Chung, C. L. Chen, H. M. Tsai and C. I. Chang, “An automatic diagnostic system for CT liver image classification,” IEEE Transactions on Biomedical Engineering, vol.45, no.6, pp.783-794, 1998.
[62] X. Zhang, G. Lee, T. Tajima, T. Kitagawa, M. Kanematsu, X. Zhou, T. Hara, H. Fujita, R. Yokoyama, H. Kondo, H. Hoshi, S. Nawano, and K. Shinozaki, “Segmentation of liver region with tumor tissues,” Proc. of SPIE. Medical Imaging, Image Processing, vol. 6512. pp. 651235, 2007.
[63] V. S. Bharathi and L. Ganesan, “Orthogonal moments based texture analysis of CT liver images”, Pattern Recognition Letters, vol.29, no.13, pp.1868-1872, 2008.
[64] B. Ganeshan, K. A. Miles, R. C. Young, C. R. Chatwin,“Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver,” European journal of radiology, vol.70, no.1, pp.101-110, 2009.
[65] J. Wang, F. Li, and Q. Li, “Automated segmentation of lungs with severe interstitial lung disease in CT,”Med. Phy., vol. 36, no. 10, pp. 4592-4599, 2009.
[66] P. Hua, Q. Song, M. Sonka, E. A. Hoffman, and J. M. Reinhardt, “Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm,” In IEEE. International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, Illinois, USA, Mar 30 – April 2, 2011, pp. 2072-2075.
[67] M. Mamcas, B. Gosselin and B. Macq, “Segmentation using a region growing thresholding,” Proc. SPIE 5672, Image Processing: Algorithms and Systems, vol. 6, pp. 388, 2005.
[68] L. Ramus and G. Malandain, “Multi-atlas based segmentation: application to the head and neck region for radiotherapy planning,” In MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, Beijing, China, September 20, 2010.
[69] J. Yang , Y. Zhang, L. Zhang. and L. Dong, “Automatic segmentation of parotids from CT scans using multiple atlases,” In Medical Image Analysis for the Clinic - MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, Beijing, China, September 20, 2010.
[70] X. Han, L. S. Hibbard, N. P. O’connell, and V. Willcut, “Automatic segmentation of parotids in head and neck CT images using multi-atlas fusion,” Medical Image Analysis for the Clinic - MICCAI workshop on 3D Segmentation Challenge for Clinical Applications, Beijing, China, September 20, 2010.
[71] A. Chen, J. H. Noble, K. J. Niermann, M. A. Deeley and B.M. Dawant, “Segmentation of parotid glands in head and neck CT images using a constrained active shape model with landmark uncertainty,” Proc. SPIE 8314, Medical Imaging : Image Processing, 83140P, 2012.
[72] P. L. Rosin, “Classification of pathological shapes using convexity measures,” Pattern Recognition Letters, vol.30, no.5, pp.570-578, 2009.
[73] S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, H. Billhardt, and M. Binder, “A comparison of machine learning methods for the diagnosis of pigmented skin lesions,” Journal of biomedical informatics, vol.34, no.1, pp. 28-36, 2001
[74] L. Wang, L. He, A. Mishra and C. Li, “Active contours driven by local Gaussian distribution fitting energy,” Signal Processing, vol. 89, no. 12, pp. 2435-2447, 2009.
[75] A. Achuthan, M. Rajeswari, D. Ramachandram, M. E. Aziz, and I. L. Shuaib, “Wavelet energy-guided level set-based active contour: A segmentation method to segment highly similar regions,” Computers in biology and medicine, vol. 40, no.7, pp. 608-620, 2010.
[76] R. M. Rangayyan, N. M. El-Faramawy, J. L. Desautels and O. A. Alim “Measures of acutance and shape for classification of breast tumors”, Medical Imaging, IEEE Transactions on vol.16, no.6, pp. 799-810, 1997.
[77] R. M. Rangayyan, N. R. Mudigonda, and J. L. Desautels, “Boundary modelling and shape analysis methods for classification of mammographic masses,” Medical and Biological Engineering and Computing, vol.38, no.5, pp. 487-496, 2000.
[78] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus and R. O. Wells Jr, “Noise reduction using an undecimated discrete wavelet transform,” Signal Processing Letters, IEEE, vol.3, no.5, pp.10-12, 1996.
[79] J. E. Fowler, “The redundant discrete wavelet transform and additive noise”, Signal Processing Letters, IEEE, vol.12, no.9, pp.629-632, 2005.
[80] R. R. Coifman and D. L. Donoho, Translation-invariant de-noising, Springer New York, pp.125-150, 1995.
[81] P. Dutilleux, “An implementation of the “algorithme à trous” to compute the wavelet transform,” Wavelets, Springer Berlin Heidelberg, pp. 298-304, 1989.
[82] Y. Hu, B. Hou, S. Wang and L. Jiao, “Texture classification via stationary-wavelet based contourlet transform,” Advances in Machine Vision, Image Processing, and Pattern Analysis, Springer Berlin Heidelberg, pp. 485-494, 2006.
[83] S. Borah, E. L. Hines and M. Bhuyan, “Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules,” Journal of Food Engineering, vol. 79, no.2, pp. 629-639, 2007.
[84] S. Livens, P. Scheunders, G. V. D. Wouwer, and D. V. Dyck. “Wavelets for texture analysis, an overview,” Proceedings of Sixth International Conference on Image Processing and Its Applications, vol. 2, pp.581-585, July 1997.
[85] G. Wouwer, P. Scheunders and D. Dyck ,“Statistical texture characterization from discrete wavelet representations,” IEEE Transactions on Image Processing, vol. 8, no. 4, pp.592-598, 1999.
[86] K. Bayram and N. Watsuji, “Using wavelets for texture classification,” IJCI Proceedings of International Conference on Signal Processing, vol. 1, no. 2, pp. 920-924, Sep. 2003.
[87] T. Chang and C. C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Transactions on Image Processing, vol. 2, no.4, pp. 429-441, 1993.
[88] A. Laine and J. Fan, “Texture classification by wavelet packet signatures,” IEEE Trans. PAMI, vol.15, no.11, pp.1186-1190, 1993.
[89] J. W. Wang, C. H. Chen, W. M. Chein and C. M. Tsai, “Texture classification using non-separable two dimensional wavelets,” Pattern Recognition Letters, vol. 19, pp. 1225–1234, 1998.
[90] W. Y. Ma and B. S. Manjunath, “Texture features and learning similarity,” In Proc. IEEE Computer Vision and Pattern Recognition Conference, San Francisco, CA, USA, June 18-20, 1996, pp. 425-430.
[91] Y. Cheng, “Mean shift, mode seeking, and clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17 no. 8, pp. 790-799,1995.
[92] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, 2002.
[93] R. Nock and F. Nielsen, “On weighting clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1223-1235, 2006.
[94] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, “A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Transactions on Medical Imaging, vol. 21, no. 3, pp.193-199, 2002.
[95] J. A. Hartigan, Clustering Algorithms, John Wiley &; Sons Inc. ISBN-13: 978-0471356455, 1975.
[96] C. A. Renato and M. Boris, “Metric, feature weighting and anomalous cluster initializing in K-Means clustering,” Pattern Recognition, vol. 45, no. 3, pp. 1061-1075, 2012.
[97] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform,” Image Processing, IEEE Transactions on, vol. 1, no. 2, pp. 205-220, 1992.
[98] T.Y. Wu and S. F. Lin. “Segmentation of Parotid Lesions in CT Images using Wavelet-based Features,” IJCA Special Issue on Recent Trends in Pattern Recognition and Image Analysis RTPRIA(1), pp.18-26, May 2013.
[99] J. X. Du, X. F. Wang, and G. J. Zhang, “Leaf shape based plant species recognition,” Applied mathematics and computation, vol. 185, no. 2, pp. 883-893, 2007.
[100] B. R. Gaines, “Fuzzy and probability uncertainty logics,” Information and Control, vol. 38, pp. 154-169, 1978.
[101] N. D. Singpurwalla and J. M. Booker, “Membership functions and probability measures of fuzzy sets,” Journal of the American Statistical Association, vol. 99, no. 467, pp. 867-877, 2004.
[102] M. J. Fonseca and J. A. Jorge, “Using fuzzy logic to recognize geometric shapes interactively”, The Ninth IEEE International Conference on FUZZ IEEE 2000, IEEE, San Antonio, Texas, U.S.A, May 7-10, 2000, pp. 291-296.
[103] A. Ferrero and S.Salicone, “Uncertainty evaluation in a fuzzy classifier for microcalcifications in digital mammography,” In Instrumentation and Measurement Technology Conference (I2MTC), IEEE. Austin, Texas, USA, May 3-6, 2010, pp. 1250-1255.
[104] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 1-38, 1977.
[105] R. Sundberg, “Maximum likelihood theory for incomplete data from an exponential family,” Scandinavian Journal of Statistics, pp. 49-58, 1974.
[106] T. F. Chan and L. A. Vese “Active contours without edges”, IEEE Trans. Image Process, vol. 10, no. 2, pp. 266–277, 2001.
[107] V. Caselles, R. Kimmel and G. Sapiro, “Geodesic active contours,” Iternational journal of computer vision, vol. 22, no. 1, pp. 61-79, 1997.
[108] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active contour models,” International journal of computer vision, vol. 1, no. 4, pp. 321-331, 1988.
[109] N. Paragios and R. Deriche, “Geodesic active contours and level sets for the detection and tracking of moving objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 3, pp. 266-280, 2000.
[110] D. Adalsteinsson and J. Sethian, “A fast level set method for propagating interfaces,” J. Computational Physics, vol. 118, no. 2, pp. 269-277, 1995.
[111] J. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Nat'l Academy of Science, vol. 93, pp. 1591-1694, 1996.
[112] R. Fabbri, L. D. F. Costa, J. C. Torelli and O. M. Bruno, “2D Euclidean distance transform algorithms: A comparative survey”, ACM Computing Surveys (CSUR), vol. 40, no. 1(2), 2008.
[113] A. Laine, J. Fan and W. Yang, “Wavelets for contrast enhancement of digital mammography”, Engineering in Medicine and Biology Magazine, vol. 14, no. 5, pp. 536-550, 1995.
[114] S. Dippel, M. Stahl, R. Wiemker and T. Blaffert, “Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform,” IEEE Transactions on Medical Imaging, vol. 21, no. 4, pp. 343-353, 2002.
[115] D. Y. Tsai and Y. Lee, “A method of medical image enhancement using wavelet-coefficient mapping functions,” Neural Networks and Signal Processing, 2003, IEEE, vol. 2, pp. 1091-1094.
[116] P. Vuylsteke and E. P. Schoeters, “Multiscale image contrast amplification (MUSICA),” Medical Imaging, International Society for Optics and Photonics, pp. 551-560, 1994.
[117] A. P. Dhawan, Medical image analysis, Wiley. Com., 31, pp. 220-225.
[118] D. L. Donoho, “Statistical estimation and optimal recovery”. The Annals of Statistics, pp. 238-270, 1994.
[119] D. L. Donoho, “De-noising by soft-thresholding”, IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613-627, 1995.
[120] T. Y. Wu, and S. F. Lin, “A multi-scale method for automatically extracting the dominant features of cervical vertebrae in CT images,” International Journal of Advanced Computer Science &; Applications, vol. 4, no. 6, pp. 1-8, 2013.
[121] T. Y. Wu, and S. F. Lin. “A method for extracting suspected parotid lesions in CT images using feature-based segmentation and active contours based on stationary wavelet transform,” Measurement Science Review, vol. 13.no. 5, pp. 237-247, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top