跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/05/31 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭國賢
研究生(外文):Hsiao, Kuo-Hsien
論文名稱:6061鋁合金半固態變形特性及顯微組織變化之研究
論文名稱(外文):Study of Deformation Behavior and the Variations of Microstructures of 6061 Aluminum Alloy in the Semi-Solid State
指導教授:徐瑞坤
指導教授(外文):Hsu, Ray-Quan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:6061鋁合金等徑轉角擠製顯微結構半固態成形形狀因子
外文關鍵詞:Aluminum 6061 AlloyEqual Channel Angular ExtrusionMicrostructureSemi-Solid formingShape Factor
相關次數:
  • 被引用被引用:5
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
半固態成形技術可以改善以往鍛造有殘留應力及鑄造有氣孔、夾渣的缺點,製造出無孔洞的成品、排除殘留應力、且成形速度快以及能得到更好的機械性質。此技術主要可以分為兩個階段實施,第一階段是準備半固態成形用胚料,第二階段是將胚料升溫至半固態下進行成形加工。
本實驗是使用大量塑性變形法中的等徑轉角擠製法來製作半固態成形用胚料,使胚料產生超細晶粒且升溫至半固態下能具有球狀晶的結構。
本研究主要探討在半固態溫度下6061鋁合金的變形特性及顯微組織變化情形,利用高週波感應加熱設備對試片進行升溫及持溫,觀察試片在半固態持溫時顯微組織的變化,以及利用壓縮試驗,比較原素材及經等徑轉角擠製之試片其成形性的差異。
實驗結果顯示晶粒尺寸及形狀因子皆對壓縮結果是有較大的影響。較小的晶粒尺寸及較佳的形狀因子能讓試片在壓縮過程中固液相呈現均勻的分佈,可以有效地保持試片壓縮時的完整性,且成形負荷低,是有利於半固態成形的。

The technique of Semi-Solid Metal Forming can decrease residual stress during forging and avoid producing products with air pockets and slag in casting. Semi-Solid Metal Forming further reduces the cost in forming time and ensures better mechanical properties. This process is divided into two stages. The first stage is to prepare the billets for forming. In the second stage, the billets are heated to the semi-solid state and then proceed to forming process.
The experimental method, Equal Channel Angular Extrusion, is adopted to produce the billets. By conducting this method, billets produce ultrafine-grain and spherical grains in the semi-solid state.
In this study, the deformation behavior and the variations of microstructures of 6061 Aluminum Alloy in the semi-solid state were discussed. Changes of microstructures were observed by heating and isothermal holding by the High Frequency Induction Heating System. Also, we compared the differences in formability between Al-6061 Alloy and ECAE Al-6061 Alloy by compression tests.
The result indicated that grain size and shape factor have significant effect on the compression results. The solid-liquid state was found in a uniform distribution found from smaller grain size and better shape factor. This has benefit on maintaining the integrity of billets and decreasing the load during the compression. Therefore, grain size and shape factor are beneficial to semi-solid forming.

目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 序論 1
1-1 研究背景 1
1-2研究動機與目的 3
第二章 文獻回顧 9
2-1 鋁合金特性 9
2-2 半固態成形原理 10
2-3 半固態成形技術 12
2-4 半固態成形胚料之製造方法 13
2-4-1 應變導引熔漿活化法 13
2-5 大量塑性變形法 15
2-5-1 等徑轉角擠製法 16
2-6 半固態成形用胚料之顯微組織變化 18
2-7 半固態胚料之適用性 20
2-8 對鎂合金胚料之研究沿革 22
第三章 實驗方法與流程 32
3-1實驗材料 32
3-2實驗設備 33
3-3實驗步驟 34
3-3-1等徑轉角反覆擠製 34
3-3-2半固態持溫時間參數壓縮試驗 36
3-3-3半固態持溫時間參數實驗 37
3-3-4顯微組織觀察及分析 38
第四章 實驗結果與討論 47
4-1 實驗用試片之顯微組織 47
4-2 持溫時間對半固態顯微組織之影響 48
4-2-1 比較不同儀器設備之實驗差異 49
4-3半固態壓縮試驗 51
4-3-1 壓縮試片的外觀觀察 52
4-3-2 壓縮試片金相顯微組織觀察 54
4-3-3 壓縮曲線數據 56
第五章 結論與未來展望 81
5-1 結論 81
5-2 未來展望 82
參考文獻 84

[1]邱垂泓,「金屬半固態製技術簡介」,鎂合金產業專欄,158-160頁,民國89年.
[2]R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deforemation”, Progress in Materials Science, vol. 45, pp. 103-189, 2000.
[3]D.B. Spencer, R. Mehrabian and M.C. Flemings, “Rheological behavior of Sn-15% Pb in the crystallization range”, Metallurgical Transaction, vol. 3, pp. 1925-1932, 1972.
[4]M. Kiuchi, R. Kopp, “Mushy/Semi-Solid Metal Forming Technology – Present and Future”, 2007.
[5]P.A. Joly and R. Mehrabian, “The Rheology of a Partially Solid Alloy”, Journal of Materials Science, vol. 11, pp. 1393-1418,1976.
[6]M.C. Flemings, “Behavior of metal Alloys in the semisolid state”, Metallurgical Transactions A, vol. 22A, pp. 957-981, 1991.
[7]K.P. Young, C.P. Kyonka, and J.A. Courtois, “Fine grained metal composition”, United States Patent 4415374, 1983.
[8]V.M. Segal, “Materials processing by simple shear”, Materials Science and Engineering A , vol. 197, pp. 157, 1995.
[9]A. Korbel, and M. Richert, “Formation of shear bands during cyclic deformation of aluminum”, Acta Metall., vol. 33, pp. 1971-1978, 1985.
[10]M. Mabuchi, K. Kubota, and K. Higashi, “New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bar”, Mater. Trans. JIM, vol. 36, pp. 1249, 1995.
[11]R.B. Schwarz, and W.L. Johnson, “Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals”, Phys. Rev. Lett., vol. 51, pp. 415-418, August 1983.
[12]J.Y. Huang, Y.T. Zhu, and T.C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening”, Acta Mater, vol. 49, pp. 1497-1505, February 2001.
[13]Y. Iwahashi, et al. “The process of grain refinement in equal-channel angular pressing”, Acta Mater, vol. 46, pp. 3317-3331, 1998.
[14]C.W. Su, L. Lu, and M.O. Lai, “3D finite element analysis on strain uniformity during ECAP process”, ProQuest Science Journals, pp.727, June 2007
[15]Yongzhong Zhang, Kui Zhang, Guojun Liu, Jun Xu, Likai Shi, Daijin Cui, Xuping Wu, and Bo Cui, “The formation of rosette α phase, structure evolution during the regeating and semi-solid casting of AlSi7Mg alloy”Journal of Materials Processing Technology, vol. 137, pp. 195–200, 2003.
[16]J.C. Gebelin, M. Suery, D. Favier, “Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys”, Materials Science and Engineering A272, pp. 134, 1999.
[17]Shoujing Luo,Qiang Chen,Zude Zhao, “Effect of processing parameters on the microstructure of ECAE-formed AZ91D magnesium alloy in the semi-solid state”, Journal of Alloys and Compounds 477, pp. 602–607, 2009.
[18]S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, “Semi-Solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP”, Journal of Alloys and Compounds 466, pp. 67–72, 2008.
[19]楊智超,「鋁鎂合金半固態成形製程之新材料開發」,工業材料雜誌,第211期,92-98頁,93年7月。.
[20]梁達嵐,「改良式SIMA法製備鎂合金半固態成形胚料之研究」,國立交通大學,碩士論文,民國96年。.
[21]江維堂,「鎂合金胚料顯微結構對半固態成形負荷之影響」,國立交通大學,碩士論文,民國96年.
[22]林岳賢,「背壓對AZ80鎂合金等徑轉角擠製顯微結構之研究」,國立交通大學,碩士論文,民國97年.
[23]黃柏升,「連續等徑轉角擠製模具之開發」,國立交通大學,碩士論文,民國97年.
[24]李俊億,「退火處理對AZ80鎂合金的顯微結構與機械性質之影響」,國立交通大學,碩士論文,民國98年.
[25]何昇融,「連續式六向等徑轉角反覆擠製機具之開發」,國立交通大學,碩士論文,民國99年.
[26]陳瑋奇,「鎂合金晶粒尺寸分佈對半固態成形負荷之影響」,國立交通大學,碩士論文,民國99年.
[27]曹植培,「升溫速率與持溫時間對超細晶粒AZ80鎂合金半固態顯微結構之影響」,國立交通大學,碩士論文,民國100年.
[28]M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, “The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A, vol. 257, pp. 328-332, 1998.
[29]范元昌,蘇健忠,翁震灼,陳俊沐,「鋁、鎂合金半固態觸變鑄造技術」,工業材料雜誌,第186期,131-138頁,91年6月.
[30]W.J. KIM, J.K. KIM, T.Y. PARK, S.I. HONG, D.I. KIM, Y.S. KIM, and J.D. LEE, “Enhancement of Strength and Superplasticity in a 6061 Al Alloy Processed by Equal-Channel-Angular-Pressing”, Metallurgical and Materials Transactions A, vol. 33A, pp. 3155-3164, October 2002.
[31]Y. W. Tham, M. W. Fu, H. H. Hng, Q. X. Pei, and K. B. Lim, “Microstructure and Properties of Al-6061 Alloy by Equal Channel Angular Extrusion for 16 Passes”, Materials and Manufacturing Processes, 22:7-8, pp. 819-824, 2007.
[32]蔡孟珊,「6061鋁合金經等徑轉角擠形之機械性質」,國立中山大學,碩士論文,民國93年.
[33]Mark Easton, Cameron Davidson, and David ST John, “Effect of Alloy Composition on the Dendrite Arm Spacing of Multicomponent Aluminum Alloys”, Metallurgical and Materials Transactions A, vol. 41A, June 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top