跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲維
研究生(外文):Chang, Che-Wei
論文名稱:軸向和徑向磁通混合開關磁阻馬達之設計與分析
論文名稱(外文):Design and Analysis of a Hybrid Switched Reluctance Motor with Axial Flux and Radial Flux
指導教授:呂宗熙
指導教授(外文):Liu, Tzong-Shi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:開關磁阻馬達混合磁通軸向磁通逕向磁通振動噪音
外文關鍵詞:Switched reluctance motorHybrid fluxAxial fluxRadial fluxVibrationAcoustic noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電動車和混合動力車用輪內馬達之設計已成為一個重要的課題。應用於電動車及混合動力車之馬達選擇上,通常由重量、效率、成本三個方向去考量。因此具備最輕重量級最大效率的永磁無刷馬達為現今電動車驅動系統的主流。鑒於考量未來永磁材料稀土金屬的成本,不需要稀土金屬的磁阻馬達成為值得探討的裝置。
開關磁阻馬達因為其簡單的結構、強健性及容錯能力、極高速運轉、高功率密度和低製造成本等優點逐漸在電動車及混合動力車應用上獲得關注。然而對於車輛應用上,開關磁阻馬達的缺點為噪音、振動及轉矩漣波的產生。根據相關文獻,噪音及振動主要來源為徑向馬達運轉時所產生之徑向力及軸向馬達運轉時所產生之軸向力。定子和轉子特殊的凸極結構及非線性電感曲線導致轉矩漣波過大。本研究建立馬達電腦輔助設計流程。藉由推導馬達輸出方程式及可行性三角法決定馬達尺寸大小,再以開關磁阻馬達中對正與不對正位置下的氣隙磁導之解析解,搭配等效磁路分析求解對正與不動置位置下的磁交鏈曲線,再者以最大磁共能變化率得到最佳激磁電流與繞阻匝數之乘積,最後以有限元素法驗證馬達其他相關性能。
本研究亦提出一新型混合開關磁阻馬達同時具備軸向和徑向氣隙,使其磁通方向達成軸向和徑向兩種方向,目的是為了增加輸出轉矩及減少振動和噪音問題。其新型開關磁阻馬達轉子同時具備軸向和徑向轉子磁極,使其徑向力及軸向力降低,進而抑制振動及噪音產生。而其新型開關磁阻馬達定子是由數個C型獨立鐵芯所組成,使其具有繞線簡易,製作成本低,槽空間大及散熱佳等特點。本研究運用所建立的設計流程,設計並實作,最後與傳統開關磁阻馬達做比較。

Designing in-wheel motors for electric vehicles and hybrid electric vehicles has already attracted attention in recent years. The choice of motors for both electric vehicles and hybrids is generally determined by three factors: weight, efficiency and cost. Hence, the permanent magnet brushless motors that have the lightest weight and maximum efficiency are becoming the mainstream of electric vehicle drive systems nowadays. However, based on the cost of rare earth metals of the permanent magnet consideration in the future, reluctance motors without using rare earth metals have become interesting research topics.
Switched reluctance motor (SRM) is gaining widespread interest as a candidate for electric and hybrid electric vehicle due to its simple structure, ruggedness, ability of fault-tolerance, extremely high-speed operation, high power density and low manufacturing cost. However, for vehicle applications, the disadvantages of SRM are the generation of acoustic, vibration and torque ripple. According to the literatures, the dominant source of acoustic noise and vibration are radial force produced by radial motor and axial force produced by axial motor. The unique salient pole structure of stator and rotor and nonlinear inductance contributes the higher torque ripple. This study establishes the computer-aided design process of SRM. By deriving the motor output equation and feasible triangle method, the size of SRM can be roughly decided. Then according to the analytical results of air gap permeance at aligned and unaligned position with equivalent magnetic analysis where the flux linkage curves at aligned and unaligned position can be obtained from. Furthermore, by finding out the product of current and turns which produces the maximum variation of co-energy determine the optimum current and turns. Finally, use the finite element method to verify the performance of motors.
This study also proposed a novel SRM with axial and radial air gap to make the flux flow have both radial and axial directions. The motor is hence called hybrid flux SRM. The purpose is to increase the output torque and reduced acoustic and vibration problem. The rotor of HSRM is composed of radial and axial rotor pole to lower the radial and axial force for reducing acoustic noise and vibration. The stator of HSRM is constructed by several independent C-core stators. The features of this C-cores are wound individually and automatically without complex and expensive winding equipment, low production cost, more space of motor slot and better thermal dissipation. Based on the design process which has been already established, the HSRM is designed and implemented in this study. Finally, the performance of HSRM is compared with the traditional SRM and other motors.

摘要 I
ABSTRACT III
TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XII
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Literature Survey 4
1.3 Research Objectives 6
1.4 Thesis Organization 7
CHAPTER 2 SWITCHED RELUCTANCE MOTOR 8
2.1 Literature Survey of Switched Reluctance Motor 8
2.2 Torque Equation 12
2.3 Operation Principle of Switched Reluctance Motor 13
2.4 Equivalent Circuit 17
CHAPTER 3 SWITCHED RELUCTANCE MOTOR DESIGN 20
3.1 Derivation of Output Equation for SRM 20
3.2 Geometry Design 25
3.3 Equivalent Magnetic Circuit Method 29
3.4 Flux Linkage Calculation of SRM by MECM 32
3.5 Calculation Results of RSRM and ASRM 44
3.6 Operational Limit 48
3.7 Design Process of SRM 51
CHAPTER 4 NOVEL HYBRID FLUX SRM 53
4.1 Hybrid SRM with Radial Flux and Axial Flux 53
4.2 Geometry Design of HSRM 60
4.3 Electric Design of HSRM 65
4.4 Analysis of HSRM by FEA 69
4.5 Comparison with HSRM and Conventional SRM 75
CHAPTER 5 EXPERIMENT 80
5.1 Prototype of HSRM 80
5.2 Inductance Measurement 83
CHAPTER 6 CONCLUSIONS 86
References 88

Arihara, H. and Akatsu, K., “Characteristics of Axial Type Switched Reluctance Motor,” IEEE Energy Conversion Congress and Exposition, pp. 3582-3589, 2011.

Arihara, H. and Akatsu, K., “Basic Properties of an Axial Type Switched Reluctance Motor,” IEEE Transactions on Industry Applications, Vol. 49, No. 1, pp. 59-65, 2013.

Arumugam, R., Lowther, D. A., Krishnan, R. and Lindsay, J. F., “Magnetic Field Analysis of a Switched Reluctance Motor Using a Two Dimensional Finite Element Model,” IEEE Transactions on Magnetics, Vol. 21, No. 5, pp. 1883-1885, 1985.

Arumugam, R., Lindsay, J. F. and Krishnan, R., “Sensitivity of Pole Arc/Pole Pitch Ratio on Switched Reluctance Motor Performance,” IEEE Industry Applications Society Annual Meeting Conference Record, Vol. 1, pp. 50-54, 1988.

Ashour, H. A., Reay, D. S. and Williams, B. W., “Shunt-Excited Doubly Salient 8/6-Switched Reluctance Machine,” IEE Proceedings- Electric Power Applications, Vol. 147, No. 5, pp. 391-401, 2000.

Benoudjit, A. and Nait Said, N., “New Dual-airgap Axial and Radial-Flux Induction Motor for on Wheel Drive Electric Propulsion Systems,” International Conference on Power System Technology, Vol. 1, pp. 615-619, 1998.

Cheshmehbeigi, H. M., Yari, S. and Afjei, E., “Design and Analysis of Low Torque Ripple Switched Reluctance Motor Using 3-Dimentional Finite Element Method,” European Conference on Circuit Theory and Design, pp. 857-861, 2009.

De Paula, P. P., da Silva, W.M., Cardoso, J.R. and Nabeta, S.L., “Assessment of the Influences of the Mutual Inductances on Switched Reluctance Machines Performance,” IEEE International Conference on Electric Machines and Drives, Vol. 3, pp. 1732-1738, 2003.

Dorrell, D. G., Knight, A.M., Popescu, M., Evans, L. and Staton, D.A., “Comparison of different motor design drives for hybrid electric vehicles,” IEEE Energy Conversion Congress and Exposition, pp. 3352-3359, 2010.

Farshad, M., Faiz, J. and Lucas, C., “Development of Analytical Models of Switched Reluctance Motor in Two-Phase Excitation Mode: Extended Miller Mode,” IEEE Transactions on Magnetics, Vol. 41, No. 6, pp. 2145-2155, 2005.

Hossain, S. A. and Husain, I., “A Geometry Based Simplified Analytical Model of Switched Reluctance Machines for Real-Time Controller Implementation,” IEEE Transactions on Power Electronics, Vol. 18, No. 6, pp. 1384-1389, 2003.

Khalil, A. and Husain, I., “A Fourier Series Generalized Geometry Based Analytical Model of Switched Reluctance Machines,” IEEE Transactions on Industry Applications , Vol. 43, No. 3, pp. 673-684, 2007.

Krishnamurthy, M., Fahimi, B. and Edrington, C. S., “On the Measurement of Mutual Inductance for a Switched Reluctance Machine,” 37th IEEE Specialists Conference on Power Electronics, pp. 1-7, 2006.

Krishnan, R., Arumugan, R. and Lindsay, J. F., “Design Procedure for Switched Reluctance Motors,” IEEE Transactions on Industry Applications, Vol. 24, pp. 456-461, 1998.

Krishnan, R., “Switched Reluctance Motor Drives-Modeling, Simulation, Analysis, Design, and Applications,” CRC Press LLC, Boca Raton, 2001.

Labak, A. and Kar, N. C., “Designing and Prototyping a Novel Five-Phase Pancake-Shaped Axial-Flux SRM for Electric Vehicle Application Through Dynamic FEA Incorporating Flux-Tube Modeling,” IEEE Transactions on Industry Applications, Vol. 49, No. 3, pp. 1276-1288, 2013.

Lawrenson, P. J., Stephenson, J. M., Blenkinsop, P. T., Corda, J. and Futon, N. N., “Variable-Speed Switched Reluctance Motors,” IEEE Proceedings-B Electric Power Applications, Vol. 127, No. 4, pp. 253-265, 1980.

Lee, J. W., Kim, H. S., Kwon, B. I. and Kim, B. T., “New Rotor Shape Design for Minimum Torque Ripple of SRM Using FEM,” IEEE Transactions on Magnetics, Vol. 40, No. 2, pp. 754-757, 2004.

Li, J., Song, X. and Cho, Y., “Comparison of 12/8 and 6/4 Switched Reluctance Motor: Noise and Vibration Aspects,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 4131-4134, 2008.


Li, J., Sun, H. and Liu, Y., “New Rotor Structure Mitigating Vibration and Noise in Switched Reluctance Motor,” International Conference on Information Networking and Automation, Vol. 2, pp. 80-84, 2010.

Liu, Y., Cheng, D., Bai, J., Tong, C., Song, Z. and Tong, W., “Topology Comparison of Compound-Structure Permanent-Magnet Synchronous Machines,” IEEE Transactions on Industry Applications, Vol. 48, No. 6, pp. 2217-2222, 2012.

Mao, S. H. and Tsai, M. C., “A Novel Switched Reluctance Motor With C-Core Stators,” IEEE Transactions on magnetics, Vol. 41, No. 12, pp. 4413-4420, 2005.

Mao, S. H., Dorrell, D. and Tsai, M. C., “Fast Analytical Determination of Aligned and Unaligned Flux Linkage in Switched Reluctance Motors Based on a Magnetic Circuit Model,” IEEE Transactions on magnetics, Vol. 45, No. 7, pp. 2935-2942, 2007.

Materu, P. and Krishnan, R., “Steady-State Analysis of the Variable-Speed Switched-Reluctance Motor Drive,” IEEE Transactions on Industrial Electronics, Vol. 36, No. 4, pp. 523-529, 1989.

Mecrow, B. C., “New Winding Configurations for Doubly Salient Reluctance Machines,” IEEE Transactions on Industrial Applications, Vol. 32, No. 6, pp. 1348-1356, 1996.

Miller, T. J. E., “Switched Reluctance Motor Drives,” Intertec Communications, Ventura, CA, USA, 1988.

Miller, T.J.E. and McGilp, M., “Nonlinear Theory of the Switched Reluctance Motor for Rapid Computer-aided Design, ” IEE Proceedings-B Electric Power Applications, Vol. 137, No. 6, pp. 337-347, Nov. 1990.

Oh, J. H. and Kwon, B. I., “New Rotor Shape Design of SRM to Reduce the Torque Ripple and Improve the Output Power,” International Conference on Electrical Machines and Systems, Vol. 1, pp. 652-654, 2005.

Park, S., Kim, W., and Kim, S., “A Numerical Prediction Model for Vibration and Noise of Axial Flux Motors,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, pp. 5757-5762, 2014.

Radun, A., “Analytically Computing the Flux Linked by a Switched Reluctance Motor Phase When the Stator and Rotor Poles Overlap, ” IEEE Transactions on Magnetics, Vol. 36, No. 4, Part 2, pp. 1996-2003, 2000.

Radun, A., “Analytical Calculation of the Switched Reluctance Motor’s Unaligned Inductance, ” IEEE Transactions on Magnetics, Vol. 35, No. 6, pp. 4473-4481, 1999.

Radun, A. V., “Design Considerations for the Switched Reluctance Motor, ” IEEE Transactions on Industry Applications, Vol. 31, No. 5, pp. 1079-1087, 1995.

Roux, C. and Morcos, M.M. “On the use of a simplified model for switched reluctance motors,” IEEE Transactions on Energy Conversion, Vol. 17, No.3, pp. 400-405, 2002.

West, J. G. W., “DC, Induction, Reluctance and PM Motors for Electric Vehicles,” Power Engineering Journal, Vol. 8, pp. 77-88, April 1994.

Yang, H. Y., Lim, Y. C. and Kim, H. C., “Acoustic Noise/Vibration Reduction of a Single-Phase SRM Using Skewed Stator and Rotor,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, pp. 4292-4300, 2013.

Zeraoulia, M., Benbouzid, M.E.H. and Diallo, D., “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study,” IEEE Transactions on Vehicular Technology, Vol. 55, No. 6, November 2006.

Zhao, H., Li, L., Ping, Z., Liu, R. and Zhao, J., “Research on the Axial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEV,” International Conference on Electrical Machines and Systems, pp. 3250-3253, 2008.

王以真,“實用磁路設計”,全華科技圖書股份有限公司,1995年。

茆尚勳,“新型切換式磁阻與同心式永磁馬達之設計與實現”,成功大學機械工程學系,博士論文,2006年。

趙博;張洪亮,“Ansoft 12 在工程電磁場中的應用”,中國水利水電出版,2010年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊