( 您好!臺灣時間:2024/03/02 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Nithinai Wongittharom
論文名稱(外文):Electrochemical Performance of LiFePO4 and LiNi0.5Mn1.5O4 in Ionic Liquid Electrolytes for Li Ion Batteries
指導教授(外文):Tai-Chou LeeJeng-Kuei Chang
外文關鍵詞:Ionic liquidLi batteryLi saltTemperatureElectrolyteAdditiveHigh voltage material
  • 被引用被引用:1
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
安全和性能(包括功率和能量密度)是下一代鋰離子電池(LIBs)的關鍵因素,被認為是現今儲能的最佳技術。丁基甲基吡咯烷鎓雙(三氟甲烷磺酰)亞胺Butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide,BMP-TFSI)離子液體(ionic liquids,ILs)與鋰鹽,即是LiTFSI、LiPF6,顯示出較高的熱穩定性(>400℃)、不易燃性和在高工作電壓下更加穩定,因此是理想的高安全性和高電壓應用。離子液體電解液相較於傳統的有機電解液,具有高黏度、小鋰離子的移動性使它們不利於高速C rate的應用。為了減輕這些問題,在離子液體電解液引入添加劑和提高溫度能顯著提高電池的容量、高倍率性能和循環性能。對鋰鹽和添加劑對離子液體為基礎的鋰離子電池電化學性能的影響徹底研究。因此,在本研究中,不同的類型和鋰鹽(包括鋰鹽的混合物)和添加劑的濃度被用於在各種溫度下,以優化電池性能。
結果顯示LiTFSI比LiPF6在BMP-TFSI離子液體電解液中更合適。LiFePO4在25oC含有0.5M LiTFSI的離子液體中,在0.1C時有最大的電容值為115 mAh g-1。在50oC含有1M LiTFSI的離子液體電解液中,在0.1 C有最高的電容值為140 mAh g-1。在5 C的時候電容的維持率有45%,100圈的充放電循環後觀察到電容沒有明顯的損失,相對於那些在25oC 0.5 C的時候,有18%速率性能的和77%的循環穩定性。
此外,對三種添加劑:碳酸亞乙烯酯(vinylene carbonate,VC)、γ-丁內酯(gamma-butyrolactone,γ-BL)和碳酸亞丙酯(propylene carbonate,PC)進行了研究。所有添加劑可以顯著提高容量、高速率性能和在25℃時電池的循環性。特別是,γ-BL被認為是最有效的。相反的在上述研究中,添加劑的加入會在高溫時產生負面影響。在75oC 0.1 C時,離子液體電解液顯示的容量為152 mAh g-1。經過100圈充放電循環後,忽略容量的損失,3 C的容量維持率有77%。這些值比無添加劑的離子液體電解液和常見的有機電解液還要好。
有機溶劑和含有1M LiTFSI的BMP-TFSI離子液體在高電壓的時候在基版會有腐蝕的現象產生。在離子液體中加入LiPF6可以有效地抑制鋁的腐蝕,從而提高電池的性能。我們發現,混合0.4M的LiTFSI和0.6 M的LiPF6鹽類在離子液體電解液中顯然優於傳統的有機電解質和且在0.1 C時有最高的放電容量為115 mAh g-1 1 C的容量維持率有25%和50oC 約4.7伏的高電壓下經過30圈的充放電循環還有43%的循環穩定性。我們預計,創新安全鋰離子電池的發展可以儲存可持續能源、延長循環壽命和滿足電子設備的使用環境(手機、筆記本電腦和GPS系統),包括高溫應用,如混合動力電動汽車(HEV)或軍事。

Both safety and performance (including power and energy density) are key factors for next-generation Lithium-ion batteries (LIBs), which are considered today the best technology for energy storage. Butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI)-based ionic liquids (ILs) with Li salts, namely LiTFSI, LiPF6, show high thermal stability (>400 oC), nonflammability and more stable at high operating voltage, thus is ideal for high-safety and high voltage applications. Compared to conventional organic electrolytes, high viscosity and small Li+ mobility of IL electrolytes make them unfavorable for high-C-rate applications. To mitigate these issues, the introduction of additive in IL electrolytes and increasing temperature can significantly improve the capacity, high-rate performance and cyclability of the cells. However, the effects of Li salts and additives on the electrochemical properties of IL-based LIB are not thoroughly investigated. As a consequence, in this study, different types and concentrations of Li salts (including mixtures of Li salts) and additives were used to optimize the cell performance at various temperatures.
The results showed that LiTFSI is more suitable than LiPF6 in the BMP-TFSI IL electrolyte. The maximum capacity was found to be 115 mAh g-1 (at 0.1 C) for LiFePO4 in the IL with 0.5 M LiTFSI at 25 °C. At 50 oC, 1 M LiTFSI-doped IL electrolyte shows highest capacity of 140 mAh g-1 at 0.1 C. 45% of the capacity can be retained at 5 C No obvious capacity loss was observed after 100 charge-discharge cycles, as opposed to those at 25 °C, which are 18% rate capability at 0.5 C and 77% cyclic stability
Furthermore, three kinds of additives (vinylene carbonate (VC), gamma-butyrolactone (ɤ-BL) and propylene carbonate (PC)) were investigated. All the additives can significantly improve the capacity, high-rate performance, and cyclability of the cells at 25 °C. In particular, γ-BL was found to be the most effective. In contrast to the aforementioned studies, the addition of additives had a negative effect at elevated temperatures. At 75 °C, the plain IL electrolyte showed a capacity of 152 mAh g-1 at 0.1 C. 77% of this capacity can be retained at 3 C and negligible capacity loss is measured after 100 charge–discharge cycles. These values are superior then the additive-incorporated IL and conventional organic electrolytes.
It is well-known that the organic solvent and 1 M LiTFSI in BMP-TFSI IL have substrate corroded at high voltage. The introduction of LiPF6 in the IL can effectively suppress Al pitting corrosion and thus improves cell performance. We found that 0.4 M LiTFSI/0.6 M LiPF6 mixed-salt IL electrolyte clearly outperform the conventional organic electrolyte and show highest discharge capacity of 115 mAh g-1 (at 0.1 C), 25% of the capacity can be retained at 1 C and 43% of the cyclic stability after 30 charge-discharge cycles are obtained at 50 °C with a high cell voltage of ~4.7 V. We anticipated that the development of innovative safe lithium-ion batteries can store sustainable energy, prolonged cycle life and meeting environmental use in electronic devices (cellular phone, laptop and GPS system) including high temperature application such as hybrid electric vehicle (HEV) or military.

ABSTRACT (in Chinese) i
ABSTRACT (in English) .iii
1.1 Overview of lithium-ion battery ..1
1.2 Aims of this work ..4
1.3 Motivation ..5
1.4 Thesis outline ..6
2.1 Active materials for the positive electrode 7
2.1.1 LiFePO4 8
2.1.2 LiNi0.5Mn1.5O4 ..9
2.2 Lithium metal anode..13
2.3 Electrolytes 15
2.3.1 Solvent..15
2.3.2 Solute (lithium salt) 17
2.3.3 Ionic liquid 19 Cations .20 Anions.21
2.3.4 Additives 24
2.4 Temperature .26
3.1 Materials 28
3.2 Preparation of carbon-coated LiFePO4 powder 31
3.3 Preparation of LiNi0.5Mn1.5O4 powder ..31
3.4 Synthesis of ionic liquids electrolyte 32
3.5 Cell assembly 33
3.6 Material and electrochemical characterization.33
3.6.1 Scanning electron microscope (SEM)..33
3.6.2 X-ray diffractometer (XRD).34
3.6.3 Fourier transform infrared (FT-IR) 34
3.6.4 X-ray Photoelectron Spectroscopy (FTIR) 34
3.6.5 Thermogravimetric Analysis (TGA) 35
3.6.6 Flammability 35
3.6.7 Conductivity. 36
3.6.8 Viscosity 36
3.6.9 Transference number 36
3.6.10 Linear sweep voltammetry (LSV).37
3.6.11 Electrochemical performance.37
4.1 Electrochemical performance of rechargeable Li/LiFePO4 cells
with ionic liquid electrolyte: Effects of Li salt and additive at
various temperature ..45
4.1.1 Morphology and crystallinity of carbon-coated LiFePO4 ..45
4.1.2 Thermal stability and flammability..46
4.1.3 Conductivity, viscosity and transference number .50
4.1.4 Voltage profile of electrolytes .53
4.1.5 Contentrations of LiTFSI salt .56
4.1.6 Types of additive .57
4.1.7 Contentrations of additive .60
4.1.8 Temperature.65
4.2 Ionic liquid electrolyte for high-voltage rechargeable
Li/LiNi0.5Mn1.5O4 cells .76
4.2.1 Morphology and crystallinity of LiNi0.5Mn1.5O4 .76
4.2.2 Thermal stability and flammability .77
4.2.3 Voltage profile of electrolytes ..79
4.2.4 Temperature.83
1. A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 2008. 43(8-9):p. 1913-1942.
2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001. 414(6861):p. 359-367.
3. W. van Schalkwijk, B. Scrosati (Eds.), Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum, Boston, 2004.
4. T. Tanaka, K. Ohta, N. Arai, Year 2000 R&;D status of large-scale lithium ion secondary batteries in the national project of Japan, J. Power Sources, 2001. 97–98:p. 2-6.
5. T. Takamura, Trends in advanced batteries and key materials in the new century, Solid State Ionics, 2002. 152–153:p. 19-34.
6. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, Safe Li-ion polymer batteries for HEV applications, J. Power Sources, 2004. 134(1):p. 124-129.
7. R.A. March, S. Vukson, S. Sarampudi, B.V. Ratnakumar, M.C. Smart, M. Manzo, P.J. Dalton, Li ion batteries for aerospace applications, J. Power Sources, 2001. 97–98:p. 25-27.
8. P.G. Bruce, Energy storage beyond the horizon: Rechargeable lithium batteries, Solid State Ionics, 2008. 179(21-26):p. 752-760.
9. S. Tobishima, Secondary batteries - lithium rechargeable systems – lithium- ion thermal runaway, Encyclopedia of Electrochemical Power Sources, 2009, Elsevier: Amsterdam. p. 409-417.
10. McCurry, J. Sony recalls nearly 500,000 PCs worldwide. 2008, http://www.guardian.co.uk/business/2008/sep/05/japan.sony.
11. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Source, 2010. 195(4):p. 939-954.
12. H. Xia, L. Lu, Y.S. Meng, G. Ceder, Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition, J. Electrochem. Soc., 2007. 154(4):p. A337-A342.
13. V. Ganesh Kumar, J.S. Gnanaraj, S.B. David, D.M. Pickup, E.R.H. van-Eck, A. Gedanken, D. Aurbach, An aqueous reduction method to synthesize spinel-LiMn2O4 nanoparticles as a cathode material for rechargeable lithium-ion batteries, Chem. Mater., 2003. 15(22):p. 4211-4216.
14. Y. Zhang, C.Y. Wang, X. Tang, Cycling degradation of an automotive LiFePO4 lithium-ion battery, J. Power Sources, 2011. 196(3):p. 1513-1520.
15. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J.Electrochem. Soc., 1997. 144(4):p. 1188–1194.

16. S. Yang, P.Y. Zavalij, M.S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun., 2001. 3(9):p. 505-508.
17. G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou, J.H. Ahn, Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochem. Acta, 2004. 50:p. 443-447.
18. Z. Gong, Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci., 2011. 4(9):p. 3223–3242.
19. V. Srinivasan, J. Newman, Existence of path-dependence in the LiFePO4 electrode, Electrochem. Solid-State Lett., 2006. 9(3):p. A110-A114.
20. A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes, J. Electrochem. Soc., 2001. 148(3):p. A224-A229.
21. C. Wang, J. Hong, Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance, Electrochem. Solid-State Lett., 2007. 10(3):p. A65-A69.
22. G. Arnold, J. Garche, R. Hemmer, S. Strebele, C. Vogler, M.W. Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, J. Power Sources, 2003. 119:p. 247-251.

23. P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali, A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance, J. Electrochem. Soc., 2002. 149(7):p. A886-A890.
24. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002. 1:p. 123-128.
25. H. Gabrisch, J.D. Wilcox, M.M. Doeff, Carbon surface layers on a high-rate LiFePO4, Electrochem. Solid-State Lett., 2006. 9(7):p. A360-A363
26. H.T. Chung, S.K. Jang, H.W. Ryu, K.B. Shim, Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite, Solid State Commun., 2004. 131:p. 549-551.
27. P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates, Nat. Mater., 2004. 3:p. 147-152.
28. H. Xie, Z. Zhou, Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery, Electrochim. Acta, 2006. 51:p. 2063-2067.
29. J.F. Ni, H.H. Zhou, J.T. Chen, X.X. Zhang, LiFePO4 doped with ions prepared by co-precipitation method, Mater. Lett., 2005. 59:p. 2361-2365.

30. S.Y. Chung, Y.M. Chiang, Microscale measurements of the electrical conductivity of doped LiFePO4, Electrochem. Solid-State Lett., 2003. 6:p. A278-A281.
31. A. Kraytsberg, Y.E. Eli, A review of 5 volt cathode materials for advanced lithium-ion batteries, Adv. Energy Mater., 2012, 2:p. 922–939.
32. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 2011, 21:p. 9938-9954.
33. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, J. Magn. Magn. Mater., 2007. 309(1):p. 100-105.
34. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 materials, Journal of Power Sources, 2010. 195(17):p. 5442-5451.
35. K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Topotactic two-phase reactions of LiNi0.5Mn1.5O4 (P4332) in nonaqueous lithium cells, J. Electrochem. Soc., 2004. 151(2):p. A296-A303.
36. H. Xia, Y.S. Meng, L. Lu, G. Ceder, Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4−δ thin-film electrodes prepared by pulsed laser deposition, J. Electrochem. Soc., 2007. 154(8):p. A737-A743.

37. Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochem. Commun., 2002. 4:p. 344-348.
38. S.T. Myung, Y. Hitoshi, Y.K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries, J. Mater. Chem., 2011. 21:p. 9891-9911.
39. H. Ota, K. Shima, M. Ue, J.I. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochim.Acta., 2004. 49(4):p. 565-572.
40. W. Xu, F. Ding, J. Zhang, X. Chen, M.H. Engelhard, M.Sushku, E. Nasybulin, J. Xiao, G.L. Graff, J.G. Zhanga, in: Proceedings of the Honolulu Prime 2012, Enhanced morphology and cycling efficiency of Li metal anode by electrolyte additives for rechargeable Li batteries, Abstract, No. 1247.
41. J. Jin, H.H. Li, J.P. Wei, X.K. Bian, Z. Zhou, J. Yan, Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte, Electrochem.Commun., 2009. 11(7):p. 2500-2503.
42. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochim. Acta, 2004. 50(2-3):p. 247-254.

43. K. Xu, Secondary batteries - Lithium rechargeable systems | electrolytes: overview, in Encyclopedia of Electrochemical Power Sources, 2009, Elsevier: Amsterdam. p. 51-70.
44. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004. 104:p. 4303-4417.
45. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 2010. 22:p. 587–603.
46. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 2011. 4:p. 3243–3262.
47. S.S. Zhang, K. Xu, T. R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery, J. Electrochem. Soc., 2002. 149:p. A586-A590.
48. S.S. Zhang, K. Xu, T.R. Jow, Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte, J. Solid StateElectrochem., 2003. 7(3):p. 147-151.
49. R. Marom, O. Haik, D. Aurbach, I.C. Halalay, Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries, J. Electrochem. Soc., 2010. 157(8):p. A972-A983.
50. L.A. Dominey, CH4. In Lithium batteries. New materials, Developments and Perspectives, G. Pistioa, Ed., Elsevier, Amsterdam.

51. T. Kawamura, S. Okada, J.I. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, J. Power Sources, 2006. 156(2):p. 547-554.
52. D. Aurbach, B. Markovsky, A. Shechter, V.E. Eli, Comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc., 1996. 143(12):p. 3809-3820.
53. L.N. Wang, Z.G. Zhang, K.L. Zhang, A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material, J. Power Sources, 2007. 167(1):p. 200-205.
54. M. Kunduraci, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power Lithium-ion batteries, J. Electrochem. Soc., 2006. 153:p. A1345-A1352.
55. H.C. Wu, C.Y. Su, D.T. Shieh, M.H. Yang, N.L. Wu, Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive, Electrochem. Solid-State Lett., 2006. 9:p. A537–A541.
56. J. Mun, T. Yim, K. Park, J.H. Ryu, Y.G. Kim, S.M. Oh, Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature, J. Electrochem. Soc., 2011. 158:p. A453–A457.
57. H. Weingrtner, Understanding ionic liquids at the molecular level: Facts, problems, and controversies, Angew. Chem. Int. Ed., 2008. 47:p. 654 – 670.
58. M. Armand, F. Endres, D.R. Macfarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Mater. 2009. 8:p. 621-629.
59. J. Dupont, R.F.D. Souza, P.A.Z. Suarez, Ionic liquid (molten Salt) phase Organometallic Catalysis, Chem. Rev. 2002. 102:p. 3667-3692.
60. C. Arbizzani, G. Gabrielli, M. Mastragostino, Thermal stability and flammability of electrolytes for lithium-ion batteries, J. Power Sources 2011. 196:p. 4801–4805.
61. B. Garcia, S. Lavalle´e, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 2004. 49:p. 4583–4588.
62. M. Gali´nski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 2006. 51:p. 5567–5580.
63. D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C.D. Long, P.C. Trulove, Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts, Green Chem., 2003. 5:p. 724–727.
64. A. Lewandowski, A.S. Mocek, Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, J. Power Sources, 2009. 194:p. 601–609.

65. J.S. Lee, J.Y. Bae, H. Lee, N.D. Quan, H.S. Kim, H. Kim, Ionic liquids as electrolytes for Li ion Batteries, J. Ind. Eng. Chem. 2004. 10:p. 1086–1089.
66. V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, J. Power Sources, 2009. 189:p. 331-336.
67. J.S. Wilkes, M.A. Zaworotko, Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids, J. Chem. Soc., Chem. Commun.,1992. 2:p. 965-967.
68. T.Y. Wu, L. Hao, P.R. Chen, J.W. Liao, Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte, Int. J. Electrochem. Sci., 2013. 8:p. 2606-2624.
69. G.B. Appetecchi, M. Montanino, A. Balducci, S.F. Lux, M. Winter, S. Passerini, Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes, Electrochemical characterization of the electrolytes, J. Power Sources, 2009. 192:p. 599-605.
70. G.B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidiniumbis(trifluoromethanesulfonyl)imide ionic liquids, Electrochim. Acta, 2009. 54:p. 1325-1332.
71. Y. Lauw, M.D. Horne, T. Rodopoulos, V. Lockett, B. Akgun, W.A. Hamilton, A.R.J. Nelson, Structure of [C4mpyr][NTf2] room-temperature ionic liquid at charged gold interfaces, Langmuir, 2012. 28(19):p. 7374-7381.
72. N. Byrne, P.C. Howlett, D.R. MacFarlane, M.E. Smith, A. Howes, A.F. Hollenkamp, T. Bastow, P. Hale, M. Forsyth, Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes, J. Power Sources, 2008. 184:p. 288-296.
73. N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries, Adv. Mater., 2005. 17:p. 2497–2501.
74. C. Tiyapiboonchaiya, J.M. Pringle, J. Sun, N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, The zwitterion effect in high-conductivity polyelectrolyte materials, Nat. Mater., 2004. 3:p. 29–32.
75. J.H. Shin, E.J. Cairns, N-Methyl-(n-butyl) pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI poly(ethyleneglycol) dimethyl ether mixture as a Li/S cell electrolyte, J. Power Sources, 2008. 177:p. 537-545.
76. J.H. Shin, P. Basak, J.B. Kerr, E.J. Cairns, Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidiniumbis(trifluoromethanesulfonyl)imide–LiTFSI electrolyte incorporating polymer additives, Electrochim. Acta, 2008. 54:p. 410-414.
77. R.S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter, A. Balducci, Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries, Electrochim. Acta, 2011. 56:p. 4092-4099.
78. V. Chakrapani, F. Rusli, M.A. Filler, P.A. Kohl, Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery, J. Phys. Chem. C, 2011. 115:p. 22048-22053.
79. L.E. Ouatani, R. Dedryvère, C. Siret, P. Biensan, D. Gonbeaua, Effect of vinylene carbonate additive in Li-ion batteries: comparison of LiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 systems, J. Electrochem. Soc., 2009. 156:p. A468-A477.
80. H. Sano, H. Sakaebe, H. Matsumotoa, Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid, J. Electrochem. Soc., 2011. 158:p. A316-A321.
81. M. Li, B. Yang, Z. Zhang, L. Wang, Y. Zhang, Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature, J. Appl. Electrochem 2013 43: p.515-521.
82. A. Chagnes, M. Diaw, B. Carre, P. Willmann, D. Lemordant, Imidazolium-organic solvent mixtures as electrolytes for lithium batteries, J. Power Sources, 2005. 145:p. 82-88.

83. M. Diaw, A. Chagnes, B. Carr´e, P. Willmann, D. Lemordant, Mixed ionic liquid as electrolyte for lithium batteries, J. Power Sources, 2005. 146:p. 682-684.
84. H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries, Electrochim. Acta, 2010. 55:p. 5204-5209.
85. H. Wang, S. Liu, N. Wang, Y. Liu, Vinylene carbonate modified 1-butyl-3-methyle-imidazolium tetrafluoroborate ionic liquid mixture as electrolyte, Int. J. Electrochem. Sci., 2012. 7:p. 7579-7586.
86. E. Peled, The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - The solid electrolyte interphase model, Electrochem. Soc., 1979. 126(1):p. 2047-2051.
87. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 2006. 162(1):p. 1379-1394.
88. B.E. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Klewer Academic / Plenum Publishers, Boston (1999).
89. F. Castiglione, E. Ragg, A. Mele, G.B. Appetecchi, M. Montanino, S. Passerini, Molecular environment and enhanced diffusivity of Li+ ions in lithium-salt-doped ionic liquid electrolytes, J. Phys. Chem. Lett., 2011. 2(3):p. 153-157.
90. G.T.K. Fey, K.P. Huang, H.M. Kao, A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials, J. Power Sources, 2011. 196(5):p. 2810-2818.
91. H.S. Choe, B.G. Carroll, D.M. Pasquariello, K.M. Abraham, Characterization of Some Polyacrylonitrile-Based Electrolytes, Chem. Mater., 1997. 9:p. 369-379.
92. D. Choi, P.N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, 2007. 163(2):p. 1064-1069.
93. G.T.K. Fey, H.J. Tu, K.P. Huang, Y.C. Lin, H.M. Kao, S.H. Chan, Particle size effects of carbon sources on electrochemical properties of LiFePO4/C composites, J. Solid State Electrochem., 2012. 16(4):p. 1857-1862.
94. G.T.K. Fey, Y.G. Chena, H.M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling, J. Power Sources, 2009. 189(1):p. 169-178.
95. C.Z. Lu, G.T.K. Fey, H.M. Kao, Study of LiFePO4 cathode materials coated with high surface area carbon, J. Power Sources, 2009. 189(1):p. 155-162.
96. H.C. Shin, W.I Cho, H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black, Electrochim. Acta, 2006. 52(4):p. 1472-1476.
97. X. Kang, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004. 104(10):p. 4303-4417.
98. J. Huang, M. Forsyth, D.R. MacFarlane, Solid state lithium ion conduction in pyrrolidinium imide–lithium imide salt mixtures, Solid State Ionics, 2000. 136-137:p. 447-452.
99. M. Forsyth, J. Huang, D.R. MacFarlane, Lithium doped N-methyl-N-ethyl pyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals, J. Mater. Chem., 2000. 10(10):p. 2259-2265.
100. T. Frömling, M. Kunze, M. Schönhoff, J. Sundermeyer, B. Roling, Enhanced lithium transference numbers in ionic liquid electrolytes, J. Phys. Chem. B, 2008. 112(41):p. 12985-12990.
101. S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, N. Terada, Imidazolium-based room-temperature ionic liquid for lithium secondary batteries : Effects of lithium salt concentration, J. Electrochem. Soc., 2007. 154(3):p. A173-A177.
102. M. Koltypin, D. Aurbach, L.Nazar, B. Ellis, On the stability of LiFePO4 olivine cathodes under various conditions (electrolyte solutions, temperatures), Electrochem. Solid-State Lett., 2007. 10(2):p. A40-A44.
103. K. Hayamizu, Y. Aihara, S. Arai, C.G. Martinez, Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of organic electrolytes containing LiN(SO2CF3)2, J. Phys. Chem. B, 1999. 103:p. 519–524.
104. K. Tasaki, K. Kanda, T. Kobayashi, S. Nakamura, M. Ue, Theoretical studies on the reductive decompositions of solvents and additives for lithium- ion batteries near lithium anodes, J. Electrochem. Soc., 2006. 153:p. A2192–A2197.
105. Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process, Electrochem. Commun., 2002. 4:p. 989-994.
106. H. Zhou, F. Lou, P.E. Vullum, M.A. Einarsrud, D. Chen, F.V. Bruer, 3D aligned-carbon nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries, Nanotechnology, 2013. 24:p. 435703-435714.
107. L. Xi, C. Cao, R. Ma, Y. Wang, S. Yang, J. Deng, M. Gao, F. Lian Z. Lu, C.Y. Chung, Layered Li2MnO3.3LiNi0.5-xMn0.5-xCo2xO2 microspheres with Mn-rich cores as high performance cathode materials for li ion batteries, Phys. Chem. Chem. Phys., 2013, 15:p. 16579–16585.
108. X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance, J. Alloys Comp., 2011. 509:p. 3623–3626.
109. G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, J. Solid State Electrochem., 2010. 14:p. 2191-2202.
110. M. Kunduraci, J.F.A. Sharab, G.G. Amatucci, High-power nanostructured LiMn2-xNixO4 high-voltage Lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology, Chem. Mater., 2006. 18:p. 3585-3592.
111. J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332, Chem. Mater., 2004. 16:p. 906-914.
112. M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS, J. Electroanal. Chem., 2001, 497:p. 84–96.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top