跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王嘉偉
研究生(外文):Chia-wei Wang
論文名稱:以水平沈積法製備二元膠體晶體光學膜
論文名稱(外文):Fabrication of binary colloidal crystal opal films by horizontal deposition method
指導教授:陳暉陳暉引用關係
指導教授(外文):Hui Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:178
中文關鍵詞:無乳化劑乳化聚合法水平沉積法光子晶體二元膠體晶體
外文關鍵詞:Soap-free emulsion polymerizationhorizontal deposition methodphotonic crystalbinary colloidal crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以無乳化劑乳化聚合法於常壓之沸騰環境下,快速合成均一粒徑次微米球與奈米球。並進一步設計其擁有不同特性,如具有不同粒徑次微米球、不同玻璃轉移溫度(Tg)次微米球以及不同官能基比例次微米球,以及不同玻璃轉移溫度的奈米球。依照其特性差異,成功地將其應用於提升光子晶體薄膜之機械性質。
首先,利用不同甲基丙烯酸甲酯(MMA)單體克數製備出不同粒徑大小之次微米球,而MMA單體添加量4 g-10 g所製備之次微米球經自組裝過程後,其光子晶體能隙位置落於可見光範圍400-700 nm內。藉由Flory-Fox方程式調整丙烯酸丁酯(BA)與MMA單體之進料比可以製備具不同Tg之次微米球,當BA之重量百分比增加時,便可使次微米球之Tg由118.5 °C降低至-5.6 °C,且粒徑均相當均一。將具不同Tg次微米球於高低環境溫度下自組裝後,由結果顯示50 °C高溫環境溫度下有助於自組裝排列更為規則。Tg 40 °C以上之次微米球於SEM下呈現圓球狀並可顯現出結構性色彩。Tg 30 °C以下之次微米球於SEM下呈現平膜狀且不具備結構性色彩,但薄膜具有良好的成膜性質。薄膜的機械性質隨著次微米球的Tg降低,逐漸由脆性高分子轉變為彈性高分子。
進而,藉由將低Tg奈米球與高Tg次微米球混合後,自組裝形成光子晶體薄膜。由SEM結果顯示低Tg奈米球於高溫環境下會軟化成殼,包覆於次微米球外圍形成殼層球,且具有規則性排列,造成光子能隙出現紅移現象。雖然光子能隙反射波峰強度降低,但是薄膜的成膜性質增加達到5B鉛筆硬度。
藉由將高Tg奈米球與低Tg次微米球混合後,自組裝形成光子晶體薄膜。由SEM結果顯示,高Tg奈米球位於次微米球間的縫隙,形成光子晶體框架,防止低Tg次微米球於成膜過程中崩塌,進而使原本不具光子能隙的薄膜顯現出結構性色彩,並且具有高透明的性質。經拉伸測試後,薄膜的機械性質可由調整次微米球之Tg與高Tg奈米球之添加量而控制。
最後改變低Tg次微米球之甲基丙烯酸(MAA)比例,隨著MAA比例增加,薄膜的機械性質逐漸由彈性轉變為脆性。藉由添加高Tg奈米球於薄膜中,經自組裝排列後可形成規則性結構,並顯現出結構性色彩。經拉伸測試後,由結果顯示薄膜的機械性質可由調整低Tg次微米球之MAA比例與高Tg奈米球之添加量而控制。

This study focuses on preparation of monodisperse submicron-scale and nano-sacle polymer spheres and the films forming ability by these two kinds polymer spheres. Submicrospheres with different particle sizes, glass transition temperatures (Tgs) and carboxyl groups were prepared. On the other hand, nanospheres with different Tgs were also prepared. The photonic crystal films with mechanical properties can be improved by self-assembly method of these two kinds of spheres.
The five topics were discussed in this study. The first topic was preparation and characterization of monodisperse poly(methyl methacrylate-co-methacrylic acid) submicrospheres via soap-free emulsion polymerization. Different particle sizes from 82 nm to 502 nm were prepared by adding 1 g to 20 g monomers.
In second topic, different Tgs submicrospheres were prepared by copolymerization of butyl acrylate (BA) and MMA. When the weight percentage of BA increased from 0 wt% to 88 wt%, the Tg of submicrospheres decreased from 118 °C to -5.6 °C. Photonic crystal films of these submicrospheres were then studied to identify the relationship between variation in Tgs and the optical properties.
In third topic, the monodisperse low Tg nanospheres were prepared and mixed with submicrospheres to form self-assemble binary colloidal crystal (BCC) films. The results showed that submicrospheres surrounded by soft nanospheres and formed like core-shell structure with a regular arrangement. The film forming properties of hardness film prepared from high Tg submicrospheres improved to 5B pencil hardness by the aid of 20 wt% low Tg nanospheres.
In fourth topic, the monodisperse high Tg nanospheres were prepared and mixed with submicrospheres to form self-assembly BCC films. The results showed that submicrospheres surrounded by hard nanospheres and formed a photonic crystal framework to prevent the collapse of the low Tg submicrospheres during film formation. According to the stress-strain diagram, the mechanical properties of BCC films were able to tune by the Tg of submicrospheres and the blended content of high Tg nanospheres. Base on the BCC film prepared by the Tg 0 °C submicrospheres and 20 wt% of high Tg nanospheres, the ultimate tensile strength and maximum elongation were able to achieve 0.78 MPa and 222 %.
In fifth topic, submicrospheres with different carboxyl groups were prepared with MAA 0 wt% to 30 wt%. The results showed that the mechanical properties of the film changed gradually from elastic to brittle. When adding 20 wt% high Tg nanosphers into the film, the MAA ratio of submicrospheres changed from 0 wt% to 8 wt%, the ultimate tensile strength were able to increase from 1.3 MPa to 3.5 MPa and maximum elongation were able decrease from 359 % to 13 %.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XXI
第一章 緒論 1
1-1 均一粒徑高分子球之簡介與文獻回顧 1
1-2 光子晶體之簡介與文獻回顧 3
1-3 二元膠體晶體之簡介與文獻回顧 5
1-4 研究動機及目的 8
第二章 實驗 9
2-1 實驗藥品 9
2-2 實驗儀器 11
2-3 實驗方法 13
2-3-1 單體精製 13
2-3-2 製備不同粒徑之均一粒徑次微米球 13
2-3-3 製備不同玻璃轉移溫度之次微米球 13
2-3-4 製備不同玻璃轉移溫度之奈米球 14
2-3-5 二元膠體晶體光學膜之製備 14
2-4 儀器分析 14
2-4-1 掃描式電子顯微鏡(SEM)測試條件 14
2-4-2 動態粒徑分析儀(DLS)測試條件 15
2-4-3 紫外-可見光光譜儀(UV-VIS)測試條件 15
2-4-4傅立葉轉換紅外線光譜儀(FTIR)測試條件 15
2-4-5 微差掃描分析儀(DSC)測試條件 15
2-4-6 鉛筆硬度計(Industrial Pencil Hardness Test)測試條件 16
2-4-7 萬能材料試驗機(Universal Testing Machine)之拉伸測試條件 16
第三章 結果與討論 17
3-1 不同粒徑次微米球之製備及其性質 18
3-2 具不同高低玻璃轉移溫度次微米球之製備及其性質 31
3-3 高Tg次微米球混合低Tg奈米球之二元膠體晶體光學膜製備及其性質 47
3-3-1 低Tg奈米球之製備 47
3-3-2 光子晶體薄膜性質之鑑定 52
3-4 高低Tg次微米球混合高Tg奈米球之二元膠體晶體光學膜製備及其性質 73
3-4-1 高Tg奈米球之製備 73
3-4-2 光子晶體薄膜性質之鑑定 77
3-5 具不同甲基丙烯酸比例之低Tg次微米球混合高Tg奈米球之二元膠體晶體光學膜製備及其性質 117
3-5-1 具不同甲基丙烯酸比例次微米球之鑑定 117
3-5-2 光子晶體薄膜性質之鑑定 125
第四章 結論 144
參考文獻 148

1. T. Matsumoto, A. Ochi, "Polymerization of styrene in aqueous solution", Kobunshi Kagaku, 22 (1965), 481-487.
2. Z. Z. Gu, H. H. Chen, S. Zhang et al., "Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals", Colloid and Surfaces A: Physicochem. Eng. Aspects, 302 (2007), 312-319.
3. S. C. Gu, T. Sakamoto, Y. Yamada et al., "Agitation requirement for synthesis of micron-sized monodisperse polymer particles in soap-free polymerization method", Colloid and Polymer Science, 285 (2007), 581-586.
4. X. Du and J. H. He, "Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization ", Journal of Applied Polymer Science, 108 (2008), 1755-1760.
5. Y. Y. Liu, M. Y. Lo, and H. Chen, "Characterization of monodisperse copolymer submicrospheres with branched structures and different glass-transition temperatures prepared by soap-free emulsion polymerization", Journel of Applied Polymer Science, 120 (2011), 2945-2953.
6. S. John, "Strong localization of photons in certain disordered dielectric superlattices", Physical Review Letters, 58 (1987), 2486-2489.
7. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Physical Review Letters, 58 (1987), 2059-2062
8. K. Liu, T. A. Schmedake, and R. Tsu, "A comparative study of colloidal silica spheres:photonic crystal versus bragg’s law", Physical Letters A, 372 (2008), 4517-4520.
9. W. Wang, B. H. Gu, and L. Y. Liang, "Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles ", Journal of Colloid and Interface Science, 313 (2007), 169-173.
10. D. J. Brink, and M. E. Lee, "Confined blue iridescence by a diffracting microstructure:an optical investigation of the cynandra opis butterfly", Applied Optics, 38 (1999), 5282-5289
11. C. Lawrence, P. Vukusic, and R. Sambles, "Grazing-incidence iridescence from a butterfly wing", Applied Optics, 41 (2002), 437-441
12. H. Ghiradella, "Light and color on the wing:structural colors in butterflies and moths", Appl. Opt., 30 (1991), 2492-3500.
13. L. P. Biro, Z. Balint, K. Kertesz, Z. vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse, and J. P. Vigneron, "Role of photonic-crystal-type structure in the thermal regulation of a lycaenid butterfly sister species pair", Physical Review E, 67 (2003), 0219071-0219077.
14. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, "Gold bugs and beyond:a review of iridescence and structural color mechanisms in beetles (coleoptera)", Journal of The Royal Society Interface, 6 (2009), 165-184.
15. J. P. Ge, and Y. D. Yin, "Responsive Photonic Crystals", Angewandte Chemie-International Edition, 50 (2011), 1492-1522.
16. T. F. Krauss, R. M. Delarue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near infrared wavelengths". Nature, 383 (1996), 699-702
17. O. Painter, R. K. Lee, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-domensional photonic band-gap defect mode laser", Science, 284 (1999), 1819-1821.
18. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a photonic bandgap structure", Nature, 407 (2000), 608-610.
19. Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, and E. L. Thomas, "Block copolymer as photonic bandgap materials", Journal of Lightwave Technology, 17 (1999), 1963-1969.
20. A. Urbas, Y. Fink, and E. L. Thomas, "One-dimensionally periodic deielctric reflectors from self-assembled block copolymer-homopolymer blends", Macromolecules, 32 (1999), 4748-4750.
21. Q. B. Meng, Z. Z. Gu, O. Sato, A Fujishima, "Fabrication of highly ordered porous structures", Applied Physic Letters, 77 (2000), 4313-4315.
22. Y. Xia, B. Gates, Y. YIN, Y. Lu, "Monodispersed colloidal spheres:old materials with new applications", Advanced Material, 10 (2000), 693-713.
23. Z. Z. Gu, Q. B. Meng, S. Hayami, A. Fujishima, O. Sato, "Self-assembly of submicron particles between electrodes", Journal of Applied Physics, 90 (2001), 2042-2044.
24. H. Wang, K. P. Yan, J. Xie et al., "Fabrication of ZnO colloidal photonic crystal by spin-coating method", Materials Science in Semiconductor Processing, 11(2008), 44-47.
25. Y. N. Fu, Z. G. Jin, G. Q. Liu, and Y. X. Yin, "Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation mehod", Synthetic Metals, 159 (2009), 1744-1750.
26. T. Kanai, T. Sawada, and J. Yamanaka, "Fabrication of large-area silica colloidal crystals immobilized in hydrogel film", Journal of the Ceramic Society of Japan, 118 (2010), 370-373.
27. L. M. Fortes, M. C. Goncalves, and R. M. Almedia, "Flexible photonic crystals for strain sensing", Optical Materials, 33 (2011), 408-412.
28. E. T. Tian, L. Y. Chi, J. X. Wang, Y. L. Song, and L. Jiang, "Tough photonic crystals fabricated by photo-crosslinkage of latex spheres", Macromolecular Rapid Communications, 30 (2009), 509-514.
29. H. Fudouzi, "Opitical properties caused by periodical array structure with colloidal particles and their applications", Advanced Powder Technology, 20 (2009), 502-508.
30. J. G. Mcgrath, R. D. Bock, J. M. Cathcart, and L. A. Lyon, "Self-assembly of paint-on colloidal crystals using poly(styrene-co-n-isopropylacrylamide) spheres", Chemistry of Materials, 19 (2007), 1584-1591.
31. C. E. Finlayson, A. I. Haines, D. R. E. Snoswell, A. Kontogeorgos, S. Vignolini, J. J. Baumberg, P. Spahn, and G. P. Hellmann, "Interplay of index contrast with periodicity in polymer photonic crystals", Applied Physics Letters, 99 (2011).
32. Y. C. Kuo, Y. C. Lee, and H. Chen, "Synthesis of photonic crystal film by self-assembly of core/shell poly(styrene)/poly(styrene-co-butyl methacrylate) submicrospheres", Journal of Thermoplastic Composite Materials (2012).
33. N. Vogel, C. K. Weiss, and K. Landfester, "From soft to hard:the generation of functional and complex colloidal monolayers for nanolithography", Soft Matter, 8 (2012), 4044-4061.
34. L. Wang, Y. Wan, Y. Li, Z. Cai, H. L. Li, X. S. Zhao, and Q. Li, "Binary colloidal crystals fabricated with a horizontal deposition method", Langmuir, 25 (2009), 6753-6759.
35. S. Zhang, B. You, G. Gu, and L. Wu, "A simple approach to fabricate morphological gradient on polymer surfaces", Polymer, 50 (2009), 6235-6244.
36. S. Zhang, S. Zhou, B. You, and L. Wu, "Fabrication of ordered porous polymer film via a one-step strategy and its formation mechanism", Macromolecules, 42 (2009), 3591-3597.
37. J. Yu, Q. Yan and D. Shen, "Co-self-assembly of binary colloidal crystals at the air-water interface", Applied Materials and Interfaces, 2 (2010), 1922-1926.
38. L. Duan, B. You, L. Wu, and M. Chen, "Facile fabrication of mechanochromic-responsive colloidal crystal films", Journal of Colloid and Interface Science, 353 (2011), 163-168.
39. Z. Cai, J. Teng, Y. Wan, and X. S. Zhao, "An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures", Journal of Colloid and Interface Science, 380 (2012), 42-50.
40. Z. Shen, L. Shi, B. You, L. Wu, and D. Zhao, "Large-scale fabrication of the three-dimensional ordered polymer films with strong structure colors and robust mechanical properties", Journal of Materials Chemistry, 22 (2012), 8069-8075.
41. T. Taenghom, Q. Pan, G. L. Rempel, and S. Kiatkamjornwong, "Synthesis and characterization of nano-sized poly[(butyl acrylate)-co-(methyl methacrylate)-co-(methacrylic acid)] latex via differential microemulsion polymerization", Colloid Polymer Science, 291 (2013), 1365-1374.
42. Z. Liu, H. Xiao, "Soap-free emulsion copolymerization of styrene with cationic monomer:effect of ethanol as a cosolvent", Polymer, 41 (2000), 7023-7031.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top